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Abstract

Non-response is a large and growing problem in survey research. Weighting

can address non-response associated with observable variables, but cannot

solve - and may exacerbate - non-response bias associated with unmeasured

factors. Selection models can correct for non-response related to both measu-

red and unmeasured factors, but prove either unwieldy or impossible for most

conventional survey data. This paper argues that surveys should be designed

to provide the information needed to make selection models function properly.

In particular, this paper focuses on two tools that enable survey data to be

used to assess selection on unmeasured factors. First, surveys can include que-

stions that elicit willingness to respond independent of content of response.

Second, by randomly treating some potential respondents with opt-in questi-

ons, we produce a variable that explains response, but does not a↵ect outcome

variables directly. Taken together, these tools allow us to easily assess weig-

hting models’ assumption that willingness to respond is unrelated to opinions.

Two empirical applications demonstrate the potential for non-response bias

to exaggerate polarization and turnout.
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for helpful conversations with Mike Alvarez, Adam Berinsky, Mike Hanmer, Erin Hartman, Dan Hopkins, Jon Ladd, John
Lapinski, Lilly Mason, Marc Meredith, Mike Miller, Hans Noel, Ellie Powell and talks at the 2017 Political Methodology
Meetings at the University of Wisconsin Madison, Georgetown University, the University of Pennsylvania and the
University of Maryland. All errors are mine.



Understanding how public opinion polls work (and fail) in the modern polling environment is a

foundational issue for the study of public opinion. Clearly, there is much to learn. Few, if any, polls

suggested that Donald Trump would carry as many Midwestern states as he did in 2016. Polls also

did not foresee the Brexit victory in June 2016, Benjamin Netanyahu’s victory in Israel in March 2015,

David Cameron’s victory in the U.K. in May 2015, Matt Bevin’s victory in the Kentucky gubernatorial

race in November 2015, among other misses.

Many suspect that non-response bias is an important factor in these polling mishaps. Over the

last ten years response rates in the U.S. have plummeted and now are under ten percent for landlines

and under eight percent for cell phones (Dutwin and Lavrakas 2016; Pew Research Center 2012).

Academic surveys are not immune from declining response rates; some important academic polls have

even abandoned random sampling, at least as conventionally understood. Potential biases that emerge

in such contexts may be less public than for election polls, but are highly troubling nonetheless.

The conventional way to address non-response is via weighting, which produces an e↵ective sample

that reflects the target population with respect to selected measurable attributes. Weighting comes

with a substantial drawback however: it fails to correct for non-response associated with unmeasured

attributes. That is, weighting fails if the propensity to respond to a survey is endogenous (or, non-

ignorable), meaning that non-response is related to the content of opinions after controlling for measured

variables.

These limits of weighting are widely recognized (see, e.g., Peress 2010). They are even more wi-

dely ignored. Survey researchers using weights rarely diagnose whether the conditions necessary for

weighting to be useful are satisfied (Franco, Malhotra, Simonovits and Zigerell 2015). One reason why

pollsters seldom test for endogenous selection is that selection models are so demanding of data that

they are often unusably low-powered and unreliable for survey data.

This paper presents a two-fold strategy for designing surveys so that they produce the kind of data

needed to identify endogenous selection. First, surveys can include questions that elicit respondents’

propensity to discuss politics independent of their opinions about politics. This information can be used
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to directly test weighting models assumption that non-response is ignorable conditional on covariates.

Second, pollsters can randomly assign respondents to conditions that a↵ect the probability of response,

but do not a↵ect the content of opinions. This can be done in many ways, but it is particularly easy to

implement with randomized treatments that inhibit response. The randomization produces a variable

that predicts response while not directly related to the opinion being measured.

While we must be realistic about how much we learn about people who never respond to surveys,

these tools give us a much stronger basis for assessing the strong assumptions underlying weighting

and related approaches or for analyzing data with models that allow for endogenous selection.

This paper provides results from two surveys that use these tools. These examples illustrate that

the selection-sensitive survey design approach is simple, allowing us to assess endogenous selection in a

context where conventional surveys would fail. The results also indicate that endogenous selection was

an issue in both surveys. The survey designed identified clear non-response bias for turnout intention,

a result that is consistent with previous work. The survey design also identified signs of severe selection

bias among partisan subsamples. For example, the gap between Democrats and Republicans on feeling

thermometers toward President Obama was 20 points higher among respondents with a high propensity

to respond.

This paper proceeds as follows. Part 1 discusses weighting and selection models as distinct appro-

aches to dealing with non-response. Part 2 presents survey design tools that survey researchers can

use to confront these challenges. Part 3 presents simulation results that demonstrate how these design

tools operate in theory. Part 4 shows how these design tools operate in practice by discussing results

from two surveys utilizing these methods.

1 Weighting and Selection Models

Non-response is a large and growing problem in contemporary survey research. Figure 1 shows the

non-response for large polling firms since 1998 from Dutwin and Lavrakas (2016) and Pew Research

Center (2012). Scholars in the late nineties were already very concerned about non-response when 64
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Figure 1: Non-response rates in political surveys

percent of those selected to be interviewed did not complete surveys. Things only got worse and now

non-response rates above 90 percent are common. Simply by answering questions, survey respondents

are indicating to us that they are willing to do something that the overwhelming majority of Americans

are not willing to do: respond to pollsters.

The dangers of non-response are clear: the types of people who respond to surveys may syste-

matically di↵er from others, yielding inaccurate descriptive and correlational statistics. This section

provides a brief overview of the state of the non-response literature by contrasting weighting and se-

lection models. Weighting models are generally feasible with data available to pollsters, but fail when

non-response is a↵ected by unmeasured factors that also a↵ect opinion. Selection models can deal with

non-response due to unmeasured, yet relevant, factors, but are often infeasible for conventional survey

data.

We model survey response with the following two equations. The outcome of interest, Y , is the

survey responses to a particular question. We model it as a function of covariates

Yi = �0 + �1Xi + ✏i (1)

where �1 is a 1⇥ p vector and Xi is a p⇥ 1 vector and ✏ is a mean-zero random variable uncorrelated

with X. For simplicity, we do not at this point account for non-linearities and interactions.
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We observe Yi|Ri=1, where Ri is an indicator variable equalling 1 for individuals who respond to the

survey and 0 for those who do not. We model response in terms of R⇤
i , which is the latent propensity

to respond:

R⇤
i = �0 + �1Zi + ⌧i (2)

where �1 is a 1⇥ k vector, Zi is a k⇥ 1 vector and ⌧ is a mean-zero random variable uncorrelated with

Z.

Two mechanisms connect Equations 1 and 2. First, the covariates in Equation 1, the outcome

equation, may contain (and possibly be the same as) the covariates in Equation 2, the selection equation.

Second, the errors in the two equations may be correlated; we denote this correlation with ⇢ where

�1 < ⇢ < 1.

Weighting is the most common approach to dealing with survey non-response. There are many

ways to implement weighting models; here we focus on inverse propensity weighting models. In inverse

propensity weighting models Equation 2 is used to generate a predicted probability of response, p̂i.

Observations in the outcome equation are then weighted by 1
p̂i

such that observations from people

underrepresented in the survey sample (who have a low probability of response, p̂i), get high weights

and observations from people overrepresented in the sample get lower weights.1 If the assumptions

underlying weighting models are correct, the weighted means in the sample for all independent variables

will align with the underlying population means.

Weights are a staple in survey research. Virtually every commercial poll uses weights. Academic

surveys such as the American National Election Study, the General Social Survey and the Congressional

Cooperative Election Study provide weights and advise end-users to use them.

Scholars vary in their use of weights however. Franco, Malhotra, Simonovits and Zigerell (2015)

assessed survey experiments in leading political science journals from 2000 to 2015 and found that 78

percent of the papers did not even report whether they used weights. Part of the variation is due to

confusion about the purpose of weighting (Solon, Haider and Wooldridge 2013).2

1On the latest tools to create optimal weights, see Caughey and Hartman (2017).
2 Note, for example, the tension between survey weighting and weighted least squares (WLS). The methods both

involve weighting individual observations, yet are motivated quite di↵erently. In WLS, the observations about which we
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The key assumption underpinning weighting models is that the decision of individuals to respond

to a poll is, conditional on covariates, unrelated to the content of the survey responses. Depending on

the literature, this assumption is stated in di↵erent, yet essentially equivalent, terms. In the causal

modeling literature, the conditional independence of propensity to respond and content of response

occurs when non-response is ignorable; the condition is violated when non-response is non-ignorable.

In the selection literature, this conditional independence is stated in terms of the correlation of the

error terms in Equations 1 and 2. If ⌧ , the error in the response equation, is uncorrelated with ✏, the

error in the outcome equation, then response is exogenous and weighting is appropriate. If these errors

are correlated, response is endogenous and weighting (and OLS) will be subject to non-response bias.

Endogenous selection is a reasonable concern for many political questions. Consider a case in which

white working-class men under the age of 30 are underrepresented in a survey sample, a common state

of a↵airs. Suppose that based on their population, we would have expected to get ten such men in our

sample, but only got five. A standard weighting scheme would double weight these five men such that

they would e↵ectively be ten men in the sample.

Weighting produces misleading results if our five respondents have systematically di↵erent opinions

(the outcome of interest) than their demographic peers who did not respond. In the political realm, it

is plausible that the five respondents were more politically engaged and that politically engaged young

white working-class men (for example) have di↵erent political views than their less politically engaged

peers. In such a situation, the error in the response equation will be correlated with the error in the

outcome equation. The sample will su↵er from non-response bias and the weighted sample may be less

representative than an unweighted sample because it places more weight on the five unrepresentative

young men.

One way to alleviate bias in weighting models is to have highly predictive covariates. Some panel-

based surveys have historical data on respondents and non-respondents, enabling weighting based on a

highly relevant covariate such as vote choice in a previous election (Lauderdale and Rivers 2016). Ho-

are most certain get the highest weight; in survey weighting, the observations from groups with the lowest response rates
get the highest weight.
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Figure 2: Bias in Weighting and OLS models

wever, even with such a variable, endogenous selection can render weighting problematic. For example,

if we weight based on 2012 vote choice when analyzing 2016 polls, we can take into account some of the

trends that may have led Obama 2012 voters to be more or less likely to respond to polls depending on

what was happening in the campaign. However, such an approach assumes that the Obama 2012 voters

who responded in 2016 were representative of all 2012 Obama voters. As with our demographic-based

example, it is plausible that there was systematic di↵erence in Obama 2012 voters interested in talking

to pollsters compared to such voters who did not respond. For example, if white, working-class Obama

2012 supporters became disillusioned with politics and responded less, we would end up generalizing

to the broader population of such voters based on a skewed subset of them.

Two factors produce rising bias in weighting approaches. The first is that the bias for weighting

(and OLS) gets worse as the correlation between the errors of the response and outcome equations

increases. The left panel of Figure 2 shows results for a simulation based on Equations 1 and 2. As

the correlation of error increases, both OLS and weighted models produce more biased estimates of �1,

with the bias being worse in weighted models.3

3 Errors distributed according to a joint normal distribution in the simulations. Non-response bias extends beyond
this specific distributional assumption.
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The second factor that a↵ects bias is the degree of non-response. Obviously, non-response bias

requires non-response. As the extent of non-response increases, non-response bias rises. The panel on

the right in Figure 2 shows bias as a function of non-response rate. Each line corresponds to a specific

value of the correlation of errors in the response and outcome equations. For the line at the bottom,

there is no correlation and, as we have seen above, there is no bias. For non-zero correlations, however,

the bias is increasing in non-response rates. Consider the line reflecting bias when ⇢, the correlation of

errors, is 0.4. At a non-response rate of 0.3, the bias is around 0.2; by the time the non-response rate

reaches 0.9, the bias reaches 0.34. Such patterns are visible for all non-zero correlations of the errors.

Given the rapid increase in non-response in Figure 1, Figure 2 suggests that we should be more vigilant

than ever about non-response.4

Selection models o↵er an alternative way to deal with non-response. The expected value of for

observations within our sample is

E[Yi|Yi observed] = �0 + �1Xi + E[✏i|Ri=1] (3)

= �0 + �1Xi + E[✏i|⌧i>��0��1Zi ] (4)

If non-response is exogenous/ignorable, then ⇢ = 0 and the E[✏i|⌧i>��0��1Zi ] = E[✏i] = 0 and OLS

and weighted models will be unbiased. If non-response is endogenous/non-ignorable, then the expected

value of ✏, the error term in the outcome equation, will be related to the value of ⌧ , the error term in

the response equation, making E[✏i|⌧i>��0��1Zi ] 6= 0 and potentially correlated with X.

Selection models provide a mechanism to incorporate our intuition about non-response into our

statistical analysis. Suppose for simplicity that the error terms in each equation reflect only trust in

the media, an unmeasured factor that increases both the propensity to respond and the value of Y . The

expected value of the error term in the outcome equation will be greater than zero because respondents

are more trusting of the media than non-respondents. In other words, non-response would lead us to

4Noting that non-response bias rises with non-response does not contradict evidence in Groves and Peytcheva (2008)
that the degree of non-response bias is unrelated to the magnitude of non-response. They are referring to an analysis of a
cross-section of surveys. For some surveys, there was bias with low non-response (corresponding perhaps to a high ⇢ and
low non-response rate in Figure 2) and in other surveys there was no bias with a high non-response rate (corresponding,
for example, to a low ⇢ and high non-response rate situation).
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overestimate the value of Y in the population.5

Selection models o↵er a variety of approaches to dealing with E[✏i|Ri=1]. Heckman (1979) presents a

canonical approach in which he assumes that ⌧ and ✏ are distributed bivariate normally with correlation

⇢. In this case,

E[Yi|Yi observed] = �0 + �1Xi + E[✏i|Ri=1]

= �0 + �1Xi + E[✏i|⌧i>��0��1Zi ]

= �0 + �1Xi + ⇢�✏
�(��0 � �1Zi)

1� �(��0 � �1Zi)

= �0 + �1Xi + ⇢�✏
�(�0 + �1Zi)

�(�0 + �1Zi)

= �0 + �1Xi + �Mi (5)

where � = ⇢�✏, �✏ is the variance of ✏ andMi is the inverse Mill’s ratio which is �(�0+�1Zi)
�(�0+�1Zi)

. The function

in the numerator, �(), is the normal probability density function. The function in the numerator, �(),

is the normal cumulative density function, which is equivalent to the fitted probability of response from

a first stage probit model of response.

Achen (1986) uses a linear probability model to estimate the response equation, an approach that

requires stronger parametric assumptions than Heckman’s model, but is easier to work with. Wooldridge

(2002, 563) shows that the Heckman model works with weaker assumptions: ⌧ is normally distributed

and E[✏|⌧ ] = �⌧ . Das, Newey and Vella (2003) provide a more general formulation that does not require

the bivariate normality assumption:

E[Yi|Yi observed] = �0 + �1Xi + �1pi + �2p
2
i + ...+ �kp

k
i (6)

Selection models use very similar information as weighting models, just in di↵erent ways. Inverse-

propensity weighting models divide all variables by pi, the probability of response for an individual;

5Endogenous selection can also bias regression coe�cients in a model that ignores selection. Coe�cients are biased if
the omitted variable, E[✏i|Ri=1], is correlated with Xi. Suppose the observed variable, X, is education and that more
educated people are more likely to respond. This means that people with low levels of education have to have particularly
high values of ⌧ to respond. In other words, low education respondents in the sample will on average be more trusting
of the media than highly educated respondents, inducing a negative correlation between education and the level of trust.
Sartori (2003) formalizes a model in which the errors in the two equations are assumed to be identical.
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selection models include a function of pi as a covariate. This is directly clear in the Das, Newey and

Vella model; for the Heckman model, note that the inverse Mill’s ratio can be re-written as �(��1(pi))
pi

.

The di↵erent treatment of similar information is consequential. Consider a simple case in which we

estimate a population mean with no control variables:

Y ⇤
i = �0 + ✏i (7)

Table 1 displays the model, the estimate and the marginal e↵ect of Yi on the population mean for

OLS (as a baseline), weighted regression and as Heckman models (as an example of selection models).

(Appendix A shows that the same principles operate in models with control variables.)

OLS is straightforward. The right-hand column in Table 1 shows that a one unit increase in Yi

increases �̂0, the estimated mean, by 1
N .

Table 1: Marginal e↵ects of Yi on �̂0 in di↵erent approaches

Approach Model Parameter Estimate @Estimate
@Yi

OLS Yi = �0 + ✏i �0 �̂0 =
P

Yi

N
1
N

Weighting Yi
pi

= �0
1
pi

+ ✏i
pi

�0 �̂0 =

P Yi
p2iP

( 1
p2i

)
1

p2
i

P
( 1
p2i

)

Heckman Yi = �0 + �Mi + ✏i �0 �̂0 = Y �M �̂ 1
N �

N�1
N (Mi�M)
P

(Mi�M)2

� �̂0 =
P

(Mi�M)(Yi�Y )P
(Mi�M)2

N�1
N (Mi�M)
P

(Mi�M)2

The e↵ect of a single observation Yi on the WLS estimate of the population mean is more involved,

but intuitive. The square of the probability of observation, pi, is in the denominator, implying that

low probability observations have much more influence than high probability observations. The e↵ect

of Yi on the WLS estimate of �̂ is greater than the e↵ect of Yi on the OLS estimate of �̂0 as long as

1
p2
i
is greater than the average of all 1

p2
i
, something that happens for small pi values. This is intuitive

as the point of weighting in this context is to give more weight to low probability observations.

The e↵ects of a single observation Yi on parameters in the Heckman model are counterintuitive.

The e↵ect of Yi on �̂0 is the e↵ect in OLS ( 1
N ) minus the marginal e↵ect of Yi on �̂. The e↵ect of Yi
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on �̂ depends on pi. If pi is low, then Mi > M (because pi is in the denominator of Mi) and the e↵ect

of increasing Yi on �̂ is positive, meaning the e↵ect of Yi on �̂0 is less than the e↵ect in OLS. In other

words, low probability observations have a smaller e↵ect on the estimated mean than they do in OLS

(and, therefore, a smaller e↵ect than in WLS models).

A one-unit increase in Yi actually can lower the Heckman estimate of the population mean value.

Figure 3 shows a stylized example of a scatterplot of Yi and Mi values for a Heckman model. The solid

line indicates the fitted line from a Heckman model for the five observations. The intercept is 0.95;

this is the estimated mean for the population, �̂
(1)
0 . The slope is the estimated normalized correlation

between the errors in the selection and outcome equations for the five observations, �̂(1). If we increase

the value of Yi by one for the observation with the highest value of the inverse Mill’s ratio (a low

probability observation given the definition of the inverse Mill’s ratio), the estimated line will become

steeper. This means that the estimated correlation of errors (�̂(2)) is higher and the estimated mean

for the population (�̂
(2)
0 ) is lower. In other words, a higher value of Yi for a low probability observation

leads the Heckman model to estimate that the overall mean value of Y in the population is lower.6

This can happen because a high value of Yi for a low probability observation is evidence of a cor-

relation error in the outcome equation and in the selection equation, potentially pushing the Heckman

model to estimate a higher value of �̂ which, in turn, pushes down the estimate of �̂0.

The key distinction between the Heckman and weighting models is that data in the Heckman model

is simultaneously informative about the correlation of errors and about the relationship between the

independent and dependent variables. In some cases, a low probability observation will indicate that

there is correlation in the error terms, rather than indicate the nature of the relationship between X

and Y. In weighted models, in contrast, low probability observations are always taken to be highly and

solely informative about the relationship between the independent and dependent variables.

Selection models therefore present a theoretically appealing, and distinct, alternative to weighting

models. There is a catch however: these models do “not always give sensible answers and [are] now

6 If we increase the value of Yi for a high probability (and, therefore, low Mi) observation, the estimate of the
population mean will rise and the estimate of the correlation of errors will fall. Appendix A shows the relative influence
of observations in the OLS, WLS and Heckman models for a model with a covariate.
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Figure 3: E↵ect of increasing Yi for low probability observation on fitted line in Heckman model

no longer regarded as the panacea for all data selection problems” (Copas and Li 1997, 59). One

problem is that we may lack data on the non-respondents. A more vexing problem is that the non-

linearity of the inverse Mills ratio notwithstanding, it is very common to see extraordinary high levels of

multicollinearity between the inverse Mills ratio and the other covariates. This is especially true when

the same variables are used in the response and outcome equations, as is common in survey research

(Bushway, Johnson, and Slocum 2007; Puhani 2000). Appendix B elaborates on the sources of this

problem. Later, we will show examples in which Heckman models applied to conventional survey data

fail. Section 3 shows this for simulations and Section 4 shows this for real data sets.

2 Selection Sensitive Survey Design

What, then, is a survey researcher supposed to do in the face of widespread non-response? There are, it

seems, three unappealing alternatives: ignore the problem, assume ignorable non-response and weight

data or implement selection models that perform poorly (if at all) on typical survey data.

This section presents an alternative approach, based on the idea that “design trumps analysis”
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(Rubin 2008). The goal is to re-design surveys so that they produce the kind of data that will allow

selection models to perform adequately. I focus on two strategies in particular. The first is to include

questions that elicit information about the propensity to respond independent of the content of response.

Doing so will allow us to directly assess whether the relationship between response propensity and

opinion; given a parametric model such as Peress (2010) we can also estimate non-response bias.

The second strategy is to incorporate into the survey a randomized treatment that a↵ects response

propensity, but not the content of opinions. Doing so will give us the statistical power necessary to

estimate a selection model.

The specific questions used here are illustrative of the broader, crucial point: we need not – and

indeed, should not – be passive in the face of potential endogenous/non-ignorable non-response when we

design our surveys. Designing surveys that enable us to address non-ignorable non-response is simple

and can produce very useful information about the nature of non-response. We may find that there is

no evidence of endogenous selection; or we may (as we do below) find evidence that calls into question

weighting as a solution to non-response.

Figure 4 illustrates how we can design our surveys to identify endogenous non-response. I include

hypothetical response numbers to provide a sense of how the process works. A sample of 15,000 is drawn

from some population and, consistent with recent response rates, 10% of these individuals complete

the survey. The 1,500 respondents are randomly assigned to control and treatment groups. The 750

individuals in the control group are asked a set of political questions.7 The 750 individuals in the

treatment group are first asked to choose a category about which to answer questions. For example,

they may be asked to choose to provide feedback on individuals associated with politics, sports or

movies as shown in Figure 5. The 375 respondents who choose politics (50% of the treatment group

in this example) are asked the same political questions as the control group. The 375 individuals who

choose a non-political topic are given a series of questions on that topic and then they are asked the

political questions.

7For now we ignore non-response in the control group.
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Willing to respond (10% Æ N = 1,500)

Control 
(N = 750)

Treatment (N = 750)
“Would you like to answer questions 

about politics, sports or movies?”
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Figure 4: Selection sensitive survey design

Figure 5: Opt-in question
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This design provides several types of data that are very useful for assessing and, if necessary,

correcting for endogenous selection. First, we can directly diagnose endogenous selection. If willingness

to respond has no e↵ect on Y , then the 375 treated respondents who chose politics should, conditional

on covariates, be no di↵erent with regard to the outcome variable than the 375 treated respondents

who initially chose to answer non-political questions. This can be tested with a simple OLS model.

Y ⇤
i = �0 + �1Choose politicsi + �XXi + ✏i (8)

where Choose politics is a dummy variable indicating that the respondent chose to answer questions

on politics and X is a vector of other covariates. If a willingness to discuss politics is associated with

the content of political opinions, we have direct evidence against the ignorability assumption needed

for weighting models.

Second, using the political opinions expressed by the 1,125 respondents in the politics response

sample, we have data that includes a randomized first stage treatment variable that is uncorrelated

with Y , but a↵ects the probability of response. In this case, for example, those in the treatment group

have a probability of response that is 0.5 lower than those in the control group. This enables us to

estimate a first stage using the information necessary to identify endogenous selection. We simulate

such a model in the next section.

3 Simulations

This section presents simulation results that illustrate how selection-sensitive survey design can enable

selection models to function properly.

In the baseline models, the response rate is 10% and pollsters contact enough people to yield a sample

of roughly 1,500 observations. A covariate X a↵ects both response probability and the outcome.

The selection model for the opt-in design is

R⇤
i = �0 + �1Opt-in treatmenti + �2Xi + ⌧i (9)

where Opt-in treatment i = 1 for those individuals randomly selected to be given a choice to politics
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or some other topic.8 We expect �1 < 0, meaning that we anticipate that respondents randomly

presented with a choice of question topics will have a lower probability of responding to political items

than respondents not given this choice. Because the opt-in treatment is randomly assigned it will

produce variation in the probability of response that is unrelated to X and that will have no direct

e↵ect on Y .

The outcome equation is

Yi = �0 + �1Xi + ✏i (10)

where the correlation of ⌧ and ✏ is defined as ⇢ and varies across simulations. We set �1 = 1 in the

simulations.

We analyze each simulated data set with OLS and weighting approaches, as described above. For

the weighting model, we assume that we observe the covariate for all contacted individuals, whether

they respond or not.

We also estimate two selection models. First, the “conventional Heckman” model includes X as the

only variable in the first and second stage models; this corresponds to the common situation in which

the variables that a↵ect selection also a↵ect outcomes. Second, in the selection-sensitive survey design,

the roughly 1,500 respondents who are willing to respond are randomly divided into a control group

and a treatment group. Everyone in the control group responds. Individuals in the treatment group

are presented with an opt-in question that reduces their willingness to respond to political questions to

50% (conditional on the fact that they are willing to respond to the overall survey in the first place).9

We begin with a scenario in which the non-randomized covariate (X) has a relatively modest e↵ect

on selection. Specifically, we assume that �2 = 0.3 (and the variance of ⌧ = 1). As discussed in

Appendix B, this induces a more-or-less linear relationship between the inverse Mill’s ratio and X,

which will undermine the ability of a conventional Heckman model to identify endogenous selection.

Figure 6 shows results for this case. The upper left panel shows the average value of �̂1 across 500

8Here the variable relates to the randomly assigned treatment. In Equation 8 the variable of interest refers to behavior
of those exposed to the randomly assigned treatment.

9Allowing for non-response among the control group does not change results. The 50% response rate chosen for this
simulation, could be higher or lower; future work could investigate what the optimal value of the drop-o↵ is and how to
generate questions that induce such a drop-o↵.
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simulations for each value of ⇢, the degree of correlation between the errors in the selection and outcome

equations. The OLS and weighting models exhibit very similar patterns, with the bias increasing as

the correlation of errors increases. The dashed line for the conventional Heckman model (which lacks

a randomized treatment variable) is typically closer to the true value of one, but is highly variable.

The solid line for the Heckman model with the randomized treatment variable is quite close to one,

indicating no sign of bias.

The panel on the upper right shows the square root of the mean-squared error (RMSE) of the �1

estimate for the various approaches. Weighting and OLS are similar, with OLS performing a bit better

across the board. The RMSE for these two techniques increases as the correlation of errors increases.

The RMSE of the conventional Heckman model in Figure 6 is awful. Even though the upper left

panel indicated that the conventional Heckman model is less biased than weighting and OLS, the

conventional Heckman model is, in fact, essentially useless as the RMSE dwarfs the RMSE in the other

models. This result will not surprise those with considerable experience with Heckman models as these

models are prone to producing highly unstable and sometimes nonsensical results. The problem, of

course, is that the inverse Mill’s ratio from the first stage model is extremely highly correlated with the

X variable in the outcome equation, making it very hard to identify both the e↵ects of X and selection.

This occurs even though the estimated e↵ect of X in the first stage probit model is highly statistically

significant, with the z-statistics averaging over 10.

The RMSE for the Heckman model with the randomized treatment instrument is excellent, coming

in below the other approaches. This is the benefit of having a first stage variable that a↵ects response,

but is not correlated with the variable in the outcome equation. This strong performance occurs even

though the selection-sensitive survey design model has about 25% fewer observations than the other

models. The informational quality of the observations trumps the volume of observations in the other

approaches. This state of a↵airs is analogous to a case in which a conventional survey based on random

sampling proves more useful than a larger convenience sample as the randomness in the selection process

o↵sets any advantages from having more non-randomized observations.
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Figure 6: Simulation results for weak first stage covariate (�2 = 0.3)

The bottom panel of Figure 6 provides a clue toward what is happening by displaying the RMSE for

the estimate of ⇢ for the two Heckman models. The selection-sensitive survey design Heckman model

performs much better than the conventional Heckman model. In fact, the conventional Heckman model

has a RMSE for ⇢ of around one, indicating that it is essentially useless in estimating the correlation

of errors.

Our second set of simulations demonstrate what happens when the covariate has a stronger e↵ect

on selection by setting �2 = 1.0 (keeping variance of ⌧ at 1). Figure 7 shows results for this scenario.

The upper left panel plots the average value of �̂1 across 500 simulations for each value of ⇢, the degree

of correlation between the errors in the selection and outcome equations. OLS and weighting models

become increasingly biased as the correlation of errors rises. The magnitude of the bias is larger than in

Figure 6 because the larger �2 in the first stage induces a stronger relationship between X in outcome

equation and the inverse Mill’s ratio. There is less bias in the two Heckman models compared to OLS

and weighting, with the conventional Heckman model showing the least bias.
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Figure 7: Simulation results for better first stage covariate (�2 = 1.0)

The panel in the upper right of Figure 6 shows the RMSE for the various approaches. The Heckman

models are best, with the selection-sensitive survey design model performing the best (despite being

based on less data), followed by the conventional Heckman model, OLS and weighting. Weighting

performs the worst, indicating that when X has a large e↵ect on selection, using a weight based on X

can produce inaccurate results. Even though the Heckman model with the random first stage treatment

has more bias than the conventional Heckman model, it has a lower RMSE. One reason for this is that

the Heckman model with the randomized treatment variable generally estimates ⇢ more accurately, as

evidenced by the bottom panel of Figure 7.

In summary, while these simulations confirm that selection models can indeed perform poorly, they

also identify grounds for optimism. If we add an easy-to-implement randomized opt-in procedure to our

survey design, selection models vastly outperform weighted models when there is non-trivial endogenous

selection.
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4 Survey examples

This section presents results from two surveys that used selection-sensitive survey design principles.

The first survey was in the field March 9-15, 2016 (N = 1,075) and the second survey was in the field

May 19-20, 2016 (N = 2,100). Both were fielded using Amazon’s Mechanical Turk, an online service

that pays people to answer surveys. This is a non-representative sample, but has been shown to provide

reasonable characterizations of the U.S. population (Berinsky, Huber and Lenz 2010) and is especially

useful to assess survey experiments where the researcher is more interested in characterizing treatment

e↵ects than in summarizing the U.S. population. The techniques described below need not be limited

to Mechanical Turk, however.

In each survey, half of the respondents were randomly assigned to a control condition; these individu-

als were immediately asked to rate politicians on a feeling thermometer. The other half of respondents

were assigned to a treatment condition; they were asked to pick a topic for questions from a list (see

Figure 5). An individual who selected politics was given the same questions as the control group. A

respondent who chose something else was first asked questions on the chosen topic and then asked the

political questions.10

The political contexts of the two surveys were quite di↵erent. The first survey occurred in early

March when the primaries were heating up and outcomes were uncertain. By late May, it was becoming

clearer that Clinton would win the Democratic nomination and that Trump had a very realistic chance

of winning the Republican nomination.11

10 The May survey had two treatments: in one the alternatives to politics were sports and movies and in the other
the alternatives to politics were sports, movies and health. For some questions, the e↵ect of the treatments seems to
di↵er, but at this point I have identified no systematic pattern and for simplicity model these two treatments as a single
treatment. In the May survey, individuals who selected sports were asked to rate Bryce Harper, Serena Williams, Tom
Brady and LeBron James. Individuals who selected movies were asked to rate Bradley Cooper, Will Smith, Jennifer
Lawrence and Tina Fey. Individuals who selected health were asked a question about frequency of exercise and a question
about how much nutrition a↵ects their food choices. In the March survey, 538 respondents were given a choice of topics:
237 chose politics (44%), 213 chose movies (40%) and 88 chose sports (16%). In the May survey, 501 respondents were
given three alternatives: 170 chose politics (34%), 240 chose movies (48%) and 91 chose sports (18%). Another 504
respondents were given four alternatives: 148 chose politics (29%), 160 chose movies (32%), 85 chose sports (17%) and
111 chose health (22%).

11There are a number of other di↵erences between the surveys that we do not analyze here. For example, the March
survey asked the political questions of those who chose sports or movies at the end of the survey; it did this only for the
feeling thermometer political questions. The May survey asked the political feeling thermometer questions immediately
following the non-political feeling thermometer questions and followed up on all political questions for those who chose
other topics later.
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The selection-sensitive survey design approach allows a direct test of the assumption that willingness

to respond is independent of the content of response. Because we later asked the political questions

of even those who chose to answer questions about movies or sports, we can compare the responses

of those who chose to respond to the political questions (whom we label as “respondents” for the

purposes of this discussion) and those who chose other topics (whom we label as “non-respondents”

for the purposes of this discussion). We include covariates in the models. This is a direct test of the

weighting-model assumption that willingness to respond is conditionally independent of opinions.

Figure 8 shows results and 95% confidence intervals for various dependent variables for the March

survey from models that control for age, gender, religiosity, education, race and Hispanic ethnicity.

The results are typically more statistically significant in models without covariates. Republican re-

spondents (Republicans who chose to answer questions about politics) were 10.4 points cooler toward

Hillary Clinton than were Republican non-respondents (Republicans who chose to answer non-political

questions), a highly statistically significant di↵erence. Republican respondents were 14.6 points more

negative toward President Obama and 8.2 points more negative toward Bernie Sanders. There were

no significant di↵erences among Republicans between respondents and non-respondents with regard

to Republican candidates (of whom, only Trump, Cruz and Rubio are shown in the figure for simpli-

city). Rubio was the only Republican candidate for whom Republican respondents were less favorable,

although the di↵erence was not statistically significant.

The right half of Figure 8 shows that Democratic respondents were more favorable than non-

respondents toward Obama and Sanders, but not toward Clinton. The lack of a clear di↵erence for

Clinton may reflect an ambivalence among politically active Democrats toward Hillary Clinton at that

time. Democratic respondents were less favorable toward Trump, Cruz and Rubio by about five points

(although the di↵erence for Rubio was not statistically significant).

These results clearly contradict the weighting assumption that willingness to respond is unrelated

to opinions, at least for partisan samples.

For the population as a whole, however, this partisan polarization produced no evidence of selection
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Figure 8: Di↵erence in feeling thermometer ratings between those who chose political questions and
those who do not in March 2016 survey, by party. Lines indicate 95% confidence intervals.
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bias as the selection bias among Republicans countered the selection bias among Democrats. The one

exception was Marco Rubio who was less popular among both Democratic and Republican respondents;

for him (and only him) there was a statistically significant di↵erence between respondents and non-

respondents among the entire sample (Democrats, Republicans and independents).

Di↵erences between respondents and non-respondents were di↵erent in the late May 2016 survey.

When we included the same covariates as used in the models for the March survey, the di↵erences

between respondent and non-respondent Republicans were about half of what they were in the March

survey (about minus 5 points for Clinton, minus 7 points for Obama and plus 5 points for Trump)

and statistically significant for only Clinton and Obama. There were no di↵erences among Democratic

respondents and non-respondents.

The late May survey also included additional questions, allowing us to add more covariates, including

a racial attitudes index (based on four questions about race), ideology (where high values indicate

conservative ideology) and occupation (such as a dummy variable for self-identifying as working in a

blue collar occupation).12 When we added those covariates (including an interaction of age and ideology

which was highly statistically significant across models), there were statistically significant di↵erences

between respondents and non-respondents when we looked at the entire sample. We report these results

in Figure 9: respondents were less favorable toward Clinton and Obama and more favorable toward

Trump.

The di↵erences between the non-response patterns in the March and May surveys suggest that

non-response patterns vary over time (see also Gelman, Goel, Rivers and Rothschild 2014). Others

have uncovered similar patterns. Berinsky (2004) found non-response patterns that varied by question

and over time while and Hopkins (2009) identified changes over time in the nature of non-response and

other related biases.

Figure 10 reports the results for models in which answers to other questions on the May survey

12The racial attitudes battery asks respondents to respond on a strongly agree to strongly disagree scale to the following
statements: “A history of slavery and discrimination makes it di�cult for blacks to work their way out of the lower class.”
“If blacks would only try harder they could be as well o↵ as whites.” “Over the past few years, blacks have gotten less
than they deserve.” “Many minority groups in the U.S. have overcome prejudice. Blacks should do the same without
any special favors.”
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Figure 9: Di↵erence in feeling thermometer ratings between those who chose non-politics questions and
those who chose politics questions in May 2016 survey, all respondents. Lines indicate 95% confidence
intervals.

are the dependent variables. All dependent variables are standardized so the e↵ects are reasonably

comparable. The survey asked respondents to indicate their likelihood of voting in the November

2016 election (coded from zero for not planning to vote to four for definitely planning to vote). Not

surprisingly, respondents are more likely to indicate they will vote. This result serves as a validity

check of the method as surveys regularly find that the proportion of survey respondents who say they

will vote (or have voted) is much higher than the actual proportion of Americans who have actually

voted (see, e.g., Brehm 1993).

Respondents were also less likely to say they would vote for Clinton over Trump and less likely

to say that they expect Clinton would make a good president. These responses came at a time when

Trump had considerable momentum in the primaries and before Democrats had unified around Clinton.

On ideology, Democratic respondents were less conservative than Democratic non-respondents and

Republican respondents were more conservative than Republican non-respondents.

Based on the whole population, respondents were less favorable toward the Black Lives Matter

movement and were less likely to say that Congress should pass a law that addresses pay di↵erences
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between men and women. These e↵ects appear concentrated among independents (N = 249 for the

Black Lives Matter question and N = 265 for the wage inequality question).13 There were no sta-

tistically significant di↵erences between respondents and non-respondents on other questions on the

May survey, including those relating to Muslim immigration, trade, bathroom accessibility for trans-

gender people, the state of the U.S. economy and whether one would be upset if their child married a

Democrat/Republican.

So far, we have presented evidence that suggests that willingness to respond is related to the

content of political opinions. If so, weighting may be subject to considerable bias. The selection-

sensitive survey design approach also produces data that will dramatically improve the performance of

Heckman selection models, allowing us to create a parametric model that integrates the selection and

outcome models. The core data set we use for this purpose is of individuals in the politics response set

which includes everyone in the control group (except for the occasional individual in the control group

who did not respond to a given question) and those in the treatment group who chose politics (which

was about 40% of those given a choice of topics). The individuals who declined to answer the politics

questions (those who occupy the dashed box in the lower right of Figure 4) are included in the first

stage Heckman model, but not included in the second stage.

The results show that the randomized opt-in treatment question was necessary and useful. If the

fit for the first stage selection model with only standard covariates is strong enough, the correlation

between the inverse Mill’s ratio and the other variables in the outcome equation may be manageably

low. In this data, however, the Heckman models with only standard covariates are essentially useless.

For feeling thermometers for each of the six politicians in Figure 8 I estimated a first stage probit

using covariates for age, gender, education, race and Hispanic ethnicity and then estimated a model

in which the inverse Mill’s ratio from the first stage probit was regressed on those covariates. This

corresponds to a common situation in which we believe the factors that a↵ect opinion content may also

13 We have not adjusted for multiple comparisons. On the one hand, doing so will widen the confidence intervals.
On the other hand, if we are using these models to test the null hypothesis that willingness to respond is unrelated
to political opinions, we may be more interested in avoiding Type II error that would occur if we say that there is no
endogenous selection when there is endogenous selection. Multiple comparison adjustments focus on accurately assessing
Type I error.
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a↵ect willingness to respond. The R2
IMR in all cases is above 0.97 and for none of these dependent

variables did a conventional Heckman model converge. In other words, a standard Heckman model

is infeasible given the standard covariates. Given such a result, it is not surprising that analysts of

conventional surveys do not use Heckman-type models to assess endogenous selection: such models fail

due to lack of su�ciently informative data.

The selection-sensitive survey design approach provides the data needed to make a Heckman model

work. It provides an additional covariate for the first stage, the randomly assigned treatment status.

TheR2
IMR from models including the treatment variable are never higher than 0.21 for the six politicians

we are investigating (recall that the lower this value, the better). In other words, the randomized opt-in

treatment gives us enough separation between the inverse Mill’s ratio and the other covariates to expect

reliable estimation of Heckman models.

Figure 11 shows the estimates of ⇢ from Heckman models based on the politics sample which consists

of everyone in the control group who responded and those in the treatment group who chose politics.

Estimates based only on Republicans (N = 297) are on the left. The ⇢̂ estimates for Clinton and

Obama are both around -0.8, indicating a strong tendency for Republicans who disliked these two to

be more likely to answer political questions. The magnitudes for the other candidates are around 0.3

and statistically significant as well, also suggesting a clear relationship between willingness to respond

and the content of opinions. Among Democrats (N = 606), the estimates of ⇢ are between 0.24 and

0.37 for Clinton, Obama and Sanders, all of which are statistically significant. The estimates for ⇢ for

Trump, Cruz and Rubio based on the Democratic sample are statistically insignificant.

The estimates of ⇢ from the May survey are generally smaller. For Hillary Clinton feeling ther-

mometers, ⇢̂ was -0.14 (p = 0.018), a pattern that was stronger among Republicans (⇢̂ = �0.26; p =

0.03) than Democrats (⇢̂ = �0.13; p = 0.06), but negative for partisans on both sides. Using the entire

population, there was weak evidence of positive selection for Trump feeling thermometers (⇢̂ = 0.11; p

= 0.09) and negative selection for Obama feeling thermometers (⇢̂ = �0.10; p = 0.11), both of which

seemed to be concentrated among Democratic respondents. There was clear evidence of negative se-
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Figure 11: Estimate of ⇢ from Heckman model with randomized first stage treatment in March 2016
survey. Lines indicate 95% confidence intervals.
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lection for answers about preferring Clinton over Trump in the general election (⇢̂ = �0.22; p = 0.008),

with the selection parameter significant among Democratic respondents, but not Republican ones.

5 Conclusion

There are two ways to look at contemporary polling. One is to view the glass as half-full: despite low

response rates and the strong possibility that people who respond to contemporary surveys are unre-

presentative of the broader population, surveys have generally performed well, at least when properly

weighted and when predicting national electoral outcomes. In fact, the biggest story of contemporary

polling may be that surveys have survived the so-called death of random sampling. Based on this view,

one could believe surveys are generally fine and to chalk up failures to the hard reality of life in an

uncertain world.

Another view is more cautious: the problem – or possibility – of selection bias is relentless. Every

survey, indeed every survey question, can su↵er from non-response bias (Berinsky 2004; Groves et al

2009).

The stakes are high. Presidential election polls in 2016 systematically erred in ways that could have

a↵ected strategies and choices of campaigns and voters. While we do not definitively know whether

non-response bias was the major contributor to polling errors, evidence suggests it mattered. Silver

(2016) found that polling errors were systematically worse in states with higher percentages of white

working class voters. If the white working class voters who responded to polls were representative of

all such voters, then weighting would have taken care of any under (or over) responsiveness by white

working class voters. However, if white working class Trump supporters were less likely to respond

to surveys, weighting would do nothing but make us overconfident in incorrect results. Research by

Enns, Schuldt, Lagodny and Rauter (2016) found that Trump voters were less willing to indicate their

support for Trump on surveys.

The vast majority of pollsters deal with non-response by weighting their data. This will make polls

more accurate if there is no endogenous selection. Otherwise, weighting can make poll results less
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representative of the target population. This makes weighting about as attractive as driving without a

seatbelt: it usually works out, but is a bad idea nonetheless.

This paper argues that we should proactively deal with the possibility of nonresponse bias. Every

survey should incorporate explicit steps to diagnose and, if necessary, correct for endogenous selection.

Two steps are easy to implement: we can inhibit response among a random subset of respondents and

we can follow-up to get responses in the same survey for those who initially avoid answering political

questions. Such data will produce data that makes it easy to test directly assumptions underlying weig-

hting models and to estimate a selection model that allows non-response to be a↵ected by unmeasured

variables that also a↵ect Y .

These steps do not cure non-response bias. No technique can definitively characterize the views

of people who do not respond to surveys. It is possible, for example, that non-response patterns

among people who are unreachable in the survey di↵er from the non-response patterns among those

who are reachable by the survey. Selection sensitive survey design techniques can, however, test the

hypothesis underlying weighting and related methods. Weighting models assume that there is no

connection between response propensity and opinion. Selection-sensitive survey design techniques test

that assumption for reachable people in the target population. If we reject the hypothesis of no response

bias in this context, we have rejected the key assumption for weighting, at least for a set of reachable

people in the target population. This allows us to move beyond the widespread, yet untenable, practice

of simply assuming away endogenous non-response bias.

Future work can also explore combining the techniques presented here with methods that account for

heterogeneous e↵ects. For example, it is possible that the e↵ect of the first-stage randomized treatment

varies across subpopulations. Perhaps the instrument a↵ects well-educated people less than others.

Accounting for such heterogeneity could produce estimates that are more precise and potentially identify

substantively interesting variation in behavior. The easiest way to investigate such possibilities is via

interactions between the instrument and variables a researcher suspects may account for heterogeneous

e↵ects. A more expansive and, potentially, careful approach may involve LASSO or other techniques
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for variable selection, especially when the number of possible covariates is high and one wants to avoid

over-fitting the data.

Non-response is a challenge that cuts to the very heart of survey research. The current norm is

to use weighting models that assume away endogenous non-response. A better approach is to design

our surveys that allow us to diagnose and, when necessary, correct for bias that might arise due to

endogenous non-response.
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Appendix

A Marginal e↵ects in model with independent variable

The di↵erential treatment of observations across models also occurs when we include control variables.
Figure A.1 depicts simulation results for the influence of observations for OLS, weighting and Heckman
models with one control variable. In each simulation, we simulate whether individuals respond or not
based on Equation 2 and then estimate coe�cients using OLS, weighting (Equation ??) and selection
models (Equation 5). The x-axis labels indicate the fitted probability of selection and the y-axis

indicates the average influence on �̂1 for observations with in a bin near the indicated probability of
selection. Each bin on the x-axis is 0.05 wide, meaning the plots reflect the average changes in the
coe�cient estimate for observations with probabilities in the specified ranges. Influence is measured
with the absolute value of a dfbeta statistic for each observation for �̂1; this statistic captures the
change in �̂1 that would occur if we were to exclude a given observation from the analysis. The results
are based on 100 simulations of data sets with 300 individuals each.14

Low probability observations exert a huge e↵ect in weighted models, with observations in the lowest
probability bin (from 0.0 to 0.05) producing dfbetas that average above nine. The variation in dfbetas
for the Heckman model pales in comparison. The figure will not surprise those who have dealt with
instability in weighted models associated with extreme weights on low probability observations (see,
e.g., Samii 2011, 19) but highlights the potentially dramatic e↵ect of low probability observations in
these models. Common sense suggests that we should be sure these models are appropriate before
implementing them.

B Weaknesses in Heckman-type models

This section highlights the sources of the problems with the Heckman selection model. I focus on
problems arising from poor model fit in the first stage model that causes severe multicollinearity
between the inverse Mill’s ratio and the other independent variables in the outcome equation. In

14The pattern in the figure is not sensitive to sample size or the magnitude of the correlation of errors.
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perfectly ordinary circumstances, this multicollinearity ravages the statistical power for estimates of ⇢
and explodes the variance for the estimates of coe�cients on independent variables.15

At first glance, the inverse Mill’s ratio seems to be a highly non-linear function. However, linearity
lurks, creating sometimes-catastrophic econometric problems. Figure B.1 shows the inverse Mill’s ratio
as a function of the probability of selection. It is essentially a straight line with a kink at lower
probabilities. If our fitted values are largely confined to the higher probabilities, then our inverse Mill’s
ratio will be essentially a linear function of the fitted probabilities (Vella 1998).

Of course, the fitted probabilities are based on a probit model and are themselves non-linear.
However, it is very common for fitted probit probabilities to be close to linear as well; it is, for example,
unsurprising for a linear probability model (LPM) to produce fitted values that correlate very highly
with probit fitted values.

Hence, if we have a situation in which the fitted probabilities are generally above 0.1 and in which
a LPM produces fitted probabilities that approximate probit fitted values, the inverse Mill’s ratio will
be very close to being a linear function of the independent variables.

Figure B.2 illustrates the connection between first stage model results and the multicollinearity in
the second stage by displaying the relationships between the probability of being selected, the inverse
Mill’s ratio and X for three cases. In each, the latent propensity of observing an observation is

R⇤
i = �0 + �1X1i + ⌧i

Here we consider cases in which the covariate is the same in both the selection and outcome equa-
tions. This is quite common as factors that a↵ect response propensity may also a↵ect the outcome.

15There are other problems with the Heckman model. The Heckman model assumes errors in the selection and outcome
equations are distributed bivariate normally. Das, Newey and Vella (2003) show that replacing the inverse Mill’s ratio
with a higher order function of the probability of selection will cover a broad range of possible joint distributions for the
errors. Another issue is that model misspecification in the first stage biases Heckman coe�cients toward OLS estimates.
This means that the inverse Mill’s ratio we estimate will have error and will su↵er from same ills as any variable measured
with error. In particular, the estimated �̂ coe�cient will be attenuated relative to the true value, making it less likely that
we will reject the null hypothesis that � = 0. The inverse Mills ratio measurement errors will typically be correlated with
the value of the true value of the inverse Mills ratio, making the consequences of measurement error more complicated
than the typical example in which measurement error is assumed to be independent of the true value. Nonetheless, the
attenuation bias associated with the independent error example carries over here under general conditions. Designing
surveys with randomized treatments that a↵ect the propensity to respond mitigates this problem by improving first stage
model fit.
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Figure B.2: Relationship of inverse Mill’s ratio and X for three cases

In public opinion models, for example, factors such as income, education, age, and party identification
plausibly a↵ect both whether people respond to a pollster and the content of their opinions. (Later we
explore models in which at least one first stage variable is not included in the second stage.)

In Case 1, �1 = 0.3, indicating that X has relatively limited influence in the first stage model
predicting selection. The panel on the top left of Figure B.2 shows a scatterplot of a dummy variable
indicating whether or not Y was observed as a function of X (the grey dots jittered at the top and
bottom of the plot) and a fitted line from the first stage probit model predicting observation. There
is only a weak relationship and the fitted values vary little. (Note, however, that the poor fit does
not necessarily correspond to statistical significance; in the simulations below the e↵ect of X in the
selection equation is highly statistically significant even in the “poor-fit” simulations corresponding to
the �1 = 0.3 case.)

The panel on the top right of Figure B.2 shows the relationship between X and the inverse Mill’s
ratio that will also be entered in the outcome equation for the Heckman model. Since X has limited
explanatory power in the first stage, there is very little variation in predicted probabilities of observation,
the key input into the inverse Mill’s ratio. In this case, the inverse Mill’s ratio variable is essentially a
linear function of X, as indicated by the R2 from an auxiliary regression of the inverse Mill’s ratio on
X of 0.995.

In Case 2, �1 = 1, suggesting a better fit in the first stage probit model. The fit from the first stage
shows more variation and this in turn leads to an inverse Mill’s ratio in the middle right panel of Figure
B.2 that is not simply a linear function of X. There is still a strong linear relationship, but at least we
can see some distinction between X and the inverse Mill’s ratio.

In Case 3, �1 = 3, suggesting a strong relationship between X and selection. The fit from the first
stage shown in the bottom right of Figure B.2 shows more variation and exhibits the classic “s shape”
of probit models. This means that the fitted values that enter into the inverse Mill’s ratio vary more
substantially and therefore induce more variation in the inverse Mill’s ratio, allowing it to be noticeably
distinct from X.

From standard multicollinearity results, we know that the Heckman model will be a disaster in
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Figure B.3: Power curve for H0: � = 0 for three values of � and N = 2,500

Case 1, as including X and the inverse Mill ratio in the same outcome equation will induce massive
multicollinearity, inflating the standard errors and causing unreliable estimates. The problem persists
in Case 2. For Case 3, the multicollinearity is in the range that we often see in observational studies.

Figure B.3 shows the power curves for testing the null hypothesis that � = 0. This is a test of
whether there is endogenous selection and the power varies considerably for the three cases. In Case 1,
with the terrible first stage fit, we have virtually no statistical power to identify endogenous selection.
In Case 2, we have decent power when � is around 0.4 and above. We have good statistical power when
we have good fit in the first stage model as we did in Case 3.

What is the best way to assess whether we have su�cient data for a Heckman model? Before
presenting an answer, we can first reject the rule of thumb that it is necessary and possibly su�cient to
have a variable that is statistically significant in the selection equation and excluded from the outcome
equation. This logic is not unreasonable as having such a variable helps break the connection between
the inverse Mill’s ratio and the variables included in the outcome equation. This rule of thumb is also
appealing because it corresponds to the intuition in two-stage least squares models, where an exclusion
condition is necessary.

However, simply excluding a variable in the selection model from the outcome model is neither
su�cient nor necessary to produce a Heckman model that will produce accurate estimates. In selection
models, the (potential) non-linearity of the inverse Mill’s ratio means that it can be perfectly valid
to have the same variables in both equations. And, even if a variable excluded from the outcome
equation is statistically significant in the selection equation, the inverse Mill’s ratio can still su↵er from
model-killing multicollinearity.16

A better way to assess the su�ciency of data for a Heckman-type model is to assess directly the
degree of multicollinearity in the outcome equation between the inverse Mill’s ratio and the independent
variables in the outcome equation. Multicollinearity can be measured via R2

IMR, the R2 produced in a
regression of the inverse Mill’s ratio on all the other variables in the outcome equation.17 If the R2

IMR is

16 A common rule of thumb for two stage least squares models is that the F-statistic for a test of the null that the
instruments exert no e↵ect in the first stage needs to be greater than 10 (corresponding to a t-statistic over 3.2 for a
single instrument). In Heckman models, it is possible to have a high z-statistic on a first-stage only variable and still
have poor model properties. For example, in all the � scenarios discussed above, we can almost always decisively reject
the null hypothesis in the first stage regression that �1 = 0.

17 The condition number of the matrix of independent variables in the outcome equation provides a very similar,
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low enough that multicollinearity does not cause unworkably large standard errors on coe�cients, then
we can simply use the results from the Heckman model. If R2

IMR is large, then we need to think about
the statistical power of our tests. Analysts should report this (or a similar diagnostic) as a matter of
course so that readers will know if it is even possible to know if there is endogenous selection.

We can do more than diagnose our ability to identify endogenous selection. We can take steps
to improve our ability to identify and correct for endogenous selection. First, we can reduce the
multicollinearity by including one or more variables in the selection equation that are excluded from
the outcome equation. While this is di�cult in observational studies, survey researchers design their
surveys to allow for variation in response probabilities that depends on factors unrelated to factors
that a↵ect the outcome. Specifically, we can create a randomized treatment that a↵ects propensity to
respond, but does not a↵ect the outcome of interest.18

Traditionally, pollsters have focused on trying to increase the probability of response, through
incentives to respond or increased contact e↵orts (Singer and Ye 2013). Such e↵orts can produce useful
information, but require more resources and can, if they involve persistent calls, degrade the quality of
responses (Fricker and Tourangeau 2010). An attractive alternative is to reduce the multicollinearity
in Heckman-type models by lowering the probability of response for a randomly selected subset of
potential respondents. Figure B.1 demonstrated that the relationship between the inverse Mill’s ratio
and the probability of selection is quite linear above probabilities of 0.10 or so (Vella 1998, 135). The
more observations we have in the low probability range, the more non-linearity we will introduce into
the estimation process, thereby increasing power and reducing the chances of having a Heckman model
that goes o↵ the rails. Intuitively, while a high p̂i person could have either a high or a low ⌧i and still
be observed, a low p̂i person must have a high ⌧i in order to be observed.19

although perhaps less intuitive, diagnostic measure (see, e.g., Bushway, Johnson, and Slocum 2007; Puhani 2000).
18Of course, every randomly sampled survey already creates a randomized variable that a↵ects response, but observa-

tions with zero probability of response will have undefined inverse Mills ratio.
19Two additional approaches to dealing with high multicollinearity may be of limited use in practice. First, we could

o↵set the multicollinearity with more data. However, if we simply add more of the same data, we will need a lot more
data, something that is expensive and, often infeasible for data sets with fixed sizes. Second, we could improve the fit in
the first stage, which would produce an inverse Mill’s ratio that exhibits a weaker linear relationship with X. Usually,
however, scholars have already done what they can to produce good model fit in the first stage with the variables at
hand.
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