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Summary. Accounting for undecided and uncertain voters is a challenging issue for pre-
dicting election results from public opinion polls. Undecided voters typify the uncertainty of
swing voters in polls but are often ignored or allocated to each candidate in a simple, deter-
ministic manner. Historically this may have been adequate because the undecided were
comparatively small enough to assume that they do not affect the relative proportions of
the decided voters. However, in the presence of high numbers of undecided voters, these
static rules may in fact bias election predictions from election poll authors and meta-poll
analysts. In this paper, we examine the effect of undecided voters in the 2016 US presiden-
tial election to the previous three presidential elections. We show there were a relatively
high number of undecided voters over the campaign and on election day, and that the
allocation of undecided voters in this election was not consistent with two-party propor-
tional (or even) allocations. We find evidence that static allocation regimes are inadequate
for election prediction models and that probabilistic allocations may be superior. We also
estimate the bias attributable to polling agencies, often referred to as “house effects”.

Keywords: Undecided voters, election polls, polling bias, presidential elections, total
survey error, Bayesian modelling.

1. Introduction

Timely and accurate polls are crucial in describing current political sentiment and trends.
Whilst no one poll will be su�ciently precise to enable reliable election predictions,
combining the results of many pre-election polls has traditionally been viewed as a way
to provide accurate forecasts. However, bias at the level of the individual poll can
produce systematic error in aggregate results, particularly if these biases are correlated.
One important source of polling bias arises from undecided voters. For this reason, the
eventual accuracy of pre-election polls is influenced by what is done to those respondents
who are undecided. In the 2016 US presidential election, a large share of voters remained
indecisive up until election day. When large in number, likely voters uncertain in their
candidate preferences have the power to determine tight elections. Most polling firms
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Fig. 1. Mean absolute error of state polls versus mean level of undecided voters in each state,
separated by year and margin of state election victory. Polling data are polls within 35 days of
US presidential elections from 2004 to 2016. “Close margin” categorises state-level elections
with absolute margin  6%, “Strong Rep.” are races where the Republican candidate had
margin> 6%, and “Strong Dem.” is the remainder.

deal with undecided voters using deterministic allocation methods, the most popular
being proportional or equal allocation. Static allocation methods prevent the uncertainty
attributable to undecided voters from propagating through a model, and may contribute
to systematic bias in the polls when the undecided voters do not split as assumed. For
this reason, the use and study of probabilistic allocations methods for undecided voters
is an important, but as yet under-researched area.

From a polling perspective, the 2016 US presidential election is of interest because
of the public perception (and media narrative) of polling failure and the impact of high
levels of undecided voters in the lead up to election day (Kennedy et al., 2017). Figure 1
shows the relationship between each state’s absolute polling error and undecided voters
grouped by year (2004 to 2016) and election result margin (a strong Republican, close,
or strong Democrat victory). The centre row is of most interest, as relatively high errors
have the most impact in elections where the race is close. Within this subset, 2016 shows
the strongest association between mean absolute error and undecided voters, indicating
that the role of the undecided may have been unprecedented in the 2016 presidential
election.

In this paper, we investigate the impact of undecided voters in the 2016 presidential
election and presidential elections in recent years. We begin by providing background
information on surveys, election polling, and undecided voters. Next, we introduce the
data on national undecided voter levels to motivate our interest in the 2016 election,
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followed by state-level polling data for our analysis. We present a novel extension of a
recently proposed model (Shirani-Mehr et al., 2018) that allows us to quantify the bias
attributable to undecided voters. We are also able to include bias attributable to certain
polling agencies, often referred to as “house e↵ects”. We show that bias in the 2016 US
presidential election was critically higher than in the previous presidential elections, and
a sizeable proportion of this increase can be accounted for by the high levels of undecided
voters. Finally, we discuss our conclusions and recommendations from this work.

2. Surveys, election polling and undecided voters

2.1. Surveys and election polling

The accuracy (or lack thereof) of public opinion surveys and election polls has received
substantial attention in recent years. All public opinion surveys, hence polls, are predi-
cated on the assumption that citizens possess well developed attitudes on major political
issues, and that surveys are passive measures of these attitudes (Converse and Traugott,
1986; Zaller and Feldman, 1992). In practice however, surveys may fail to adequately
capture the sociological complexity of voting decisions and behaviour (Crossley, 1937;
Gelman and King, 1993; Jacobs and Shapiro, 2005; Hillygus, 2011). Increasingly, mod-
ern public opinion surveys also have to cope with declining response rates (Keeter et al.,
2000; Tourangeau and Plewes, 2013; PRC, Pew Research Center, 2012) combined with
di�culties in achieving complete coverage of the population (Jacobs and Shapiro, 2005;
Traugott, 2005; Leigh and Wolfers, 2006; Erikson and Wlezien, 2008). Robust evidence
has demonstrated that the role of statistical uncertainty in the opinion polls has not
been adequately understood (Martin et al., 2005; Sturgis et al., 2016; Hillygus, 2011;
Graefe, 2014) and a failure to fully reflect this uncertainty leads to an over-statement
of confidence level in predictions from survey outcomes (Erikson and Wlezien, 2008;
Rothschild, 2015; Lock and Gelman, 2010).

There are a number of factors that influence the uncertainty in election polls. First,
although polls play an important role in the democratic process it is becoming increas-
ingly di�cult to measure voting intention (Curtice and Firth, 2008; Keeter and Igielnik,
2016). Relatedly, there are di↵erences between voting intentions and voting behaviour
(Wlezien et al., 2013; Hopkins, 2009; Veiga and Veiga, 2004; Jennings and Wlezien,
2016). It is also generally agreed that survey respondents will not be fully representative
of the entire voting public. Finally, disparities in the population result in di↵erences in
voter behaviour by geography, ethnicity, social class, gender and age, which e↵ectively
exacerbates the level of uncertainty when it comes to generalising from the sample survey
to the broader population.

Understanding the mechanisms that a↵ect polling error can provide valuable insights
for better calibration and e�ciency of individual polls and models derived from them.
Yet undecided voters are still a relatively under-studied source of this error.

2.2. Undecided voters and election polling

Pre-election polls are typically conducted based on random sampling of likely voters
who are asked for their preference among presidential candidates. Most polls record
the percentage of voters who respond indecisively but do not necessarily publish this
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level in their survey results (Sturgis et al., 2016). When the number of undecided voters
is not reported, the polling agency may simply pre-allocate based on some judgement
or decision-rule (which they may or may not report). Conversely, when the level of
undecided voters is reported it can still be a challenge to incorporate these into predictive
models (Hillygus, 2011; Hoek and Gendall, 1997). There is no consistent or transparent
method for handling undecided voters.

To begin, we define undecided voters as individuals that are likely to vote but who
have not formed a voting intention when surveyed prior to election day. The term “late-
deciding” also describes these voters. Whilst similar to Kosmidis and Xezonakis (2010),
our definition is restricted to likely voters as most election polls make adjustments to
report results for this group only (Sturgis et al., 2016). Moreover, by necessity our
definition of undecided voters must also include likely voters who have chosen not to
disclose their voting preferences by stating they are undecided during a survey.

Many rule-based methods have been proposed to handle undecided voters in elections
(Crespi, 1988; Daves and Warden, 1995; Fenwick et al., 1982), however some findings
have indicated these assignment methods do not improve forecast accuracy (Hoek and
Gendall, 1997). Simple rules for allocating undecided respondents may be adequate
if the undecided voters are small in number but will likely fail when these numbers
are relatively high. Additionally, any deterministic rule will not allow for variability of
allocations to be modelled in predictive outcomes, which is problematic for statistical
calibration. Limited research into the impact of undecided voter allocation on election
poll modelling still leaves many questions about the role of indecisive voters in election
polling.

The e↵ect of undecided voters on the assessment of predictive accuracy of election
polls has been considered previously (see for example, Mitofsky, 1998; Hoek and Gen-
dall, 1997; Visser et al., 2000; Martin et al., 2005). Overall, the research has focussed
on the treatment of undecided voters so that consistent accuracy measures can be de-
fined, rather than how allocative assumptions impact polling bias. Visser et al. (2000)
state that there is little published “collective wisdom” on undecided voters and better
guidelines are needed, especially since excluding undecided voters was the least e↵ective
strategy in their analysis.

Investigation into undecided voter behaviour has occurred mostly in the context of
election campaign assessment. For example, in US and Canada, voters who decide last
minute may be more open to persuasion (Cha↵ee and Rimal, 1996; Fournier et al.,
2004), and in the 2005 British elections, Kosmidis and Xezonakis (2010) concluded that
perceived economic competence was a larger driver for the behaviour of undecided voters.
However, for election outcome modellers, little can be said on the correct treatment of
undecided voters for election predictions. Most notably, imputing candidate preferences
for undecided voters has been found to be somewhat beneficial in Fenwick et al. (1982)
whilst more recently Nandram and Choi (2008) proposed a Bayesian allocation. However,
the true benefits for election forecasting is not yet clear.

Formal reports into the polling of the most recent elections in the US and UK have
found some evidence of bias attributable to undecided voters. In the 2015 UK general
election, Sturgis et al. (2016) report a modest, but marginal, e↵ect from late-deciding
voters, at most 1%. They assign the primary cause of the polling failure to unrepresen-
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tative samples, which statistical procedures (designed to account for this) were not able
to mitigate. The report into polls for the US presidential election (Kennedy et al., 2017)
suggest that polls were accurate at the time they were conducted, but in some key states
projection error was high due to late-deciding voters. Overall, they attribute a number
of factors to polling bias in the 2016 election. In addition to late or undecided voters,
they particularly emphasise over-representation of college graduates (without appropri-
ate adjustment) and late-revealing Trump supporters – which can also manifest as larger
levels of undecided voters in polls.

Based on the accuracy of the 2016 presidential election, a more sophisticated evalu-
ation of undecided voters is necessary for predicting future elections if undecided voter
levels are relatively high. This study estimates the sizeable bias attributable to unde-
cided voters in 2016, shows evidence of undecided bias in previous presidential elections,
and demonstrates that allocating undecided voters in proportion (or evenly) to the lead-
ing candidates is a poor assumption. We expect the implications of our findings will
contribute to uncovering causal mechanisms that (probabilistically) determine unde-
cided voters allocations. Unfortunately, with the available data we are not yet able to
investigate these. We elaborated on the consequences for election prediction and future
research in the discussion.

2.3. Meta-analysis of polls

Any one poll will be a snapshot of the sample collected, fraught with di�culties per-
taining to sampling design, non-representativeness, and di↵erences in methodological
assumptions. For this reason, a single poll should be interpreted cautiously, even more
so in situations when there is little previous experience to draw upon, for example in a
referendum or, arguably, the 2016 US presidential election. Nonetheless, polling results
from various sources can be compiled, compared, analysed and then interpreted using
meta-analysis techniques to combine (or pool) together di↵erent polls.

Meta-polls and poll modelling can compensate for the bias and inaccuracy of indi-
vidual polls, but establishing well-calibrated models require understanding the inherent
problems in polls, and defensible model assumptions. In election polling, determinis-
tic (rule-based) allocation of undecided voters is widespread (Crespi, 1988; Visser et al.,
2000; Martin et al., 2005). These methods are appealingly simple and create a consistent
set of data when polling organisations do not publish the number of undecided or third
party voters. Undecided voters can be allocated (explicitly or implicitly) in a number of
ways (Martin et al., 2005; Mitofsky, 1998). The most prevalent are:

• Splitting the undecided voters proportionately between the two leading candidates.
This is equivalent (in mean) to discarding the undecided voters and normalising
the two leading candidate’s voter proportions, and

• Allocating half of the undecided voters to each of the leading candidates. This is
equivalent (in mean) to only reporting the margin between the two leading candi-
dates.

Identifying the allocation procedures that polling firms use (if they do not report unde-
cided voters) is di�cult because they are averse to providing commercially sensitive infor-
mation. Some meta-pollsters have published how they handle undecided voters in their
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models for at least the 2016 election. FiveThirtyEight split undecided evenly between
the major-party candidates (Silver, 2016), as did the Princeton Election Consortium
implicitly when they used the margin between the two leading candidates (Princeton
Election Consortium, 2016). In contrast, the Hu�ngton Post used a di↵erent strategy,
assuming that “one-third of undecided voters won’t vote; one-third will gravitate nation-
ally toward either candidate; and the remaining one-third will add to this state’s margin
of error” (Hu�ngton Post, 2016a). Interestingly, the Hu�ngton Post model is a mixture
between proportional allocation, even allocation, and (imprecisely) incorporating some
uncertainty from undecided voters into poll modelling.

Meta-analysis of polls is crucial to obtaining reliable predictions for elections, however,
it is very di�cult for these models to account for systematic bias in polls. Namely, if
every poll is subject to a particular source of bias, how do we isolate and quantifying
its influence without external information? Investigating the role of undecided voters in
polling bias will help to understand one aspect that contributed to larger polling bias in
the 2016 presidential election, which may occur again.

2.4. Data

In Section 3, we examine the extent to which 2016 was an abnormal presidential election
by considering the number of undecided voters relative to previous years. To investigate
we summarise national polling data in US presidential elections from 2004 onwards, to-
talling 616 national polls. Polls from 2012 and 2016 were obtained from the Hu�ngton
Post’s Pollster API (Hu�ngton Post, 2016b; Arnold and Leeper, 2016), data for 2008
were retrieved from an archived version of “Pollster.com” (Hu�ngton Post, 2009), and
data from 2004 were reconstructed† with polls available from (RealClearPolitics, 2004).
Publicly available polls that reported a sample size were used. In order to model the
undecided voters, the majority of polls in each election year needed to report the unde-
cided category (explicitly or implicitly). This limited the number of elections that could
be analysed to 2004, 2008, 2012, and 2016.

State level polling data from 2004 to 2016 are used to model polling bias and variance.
The polls for 2012 and 2016 were obtained from Hu�ngton Post (2016b) whilst the
polls for 2004 and 2008 were retrieved from US Election Atlas (Leip, 2008). Polls were
included if they occurred up to 35 days prior to their respective election. Due to the
complexity of our model, state-level elections were only included if they had at least 5
polls in the dataset. Whilst other poll repositories exist for 2004 and 2008 state-level
election polling data, none consistently reported undecided voter counts. In total 1,905
polls, from 129 state-level election races were analysed. State-level polling data for US
presidential elections where a majority of the polls included an undecided voter category
were not found for years prior to 2004 by the authors.

† All polls that reported a third party candidate, but did not sum to 100% of the sample were
assumed to be reporting an undecided category equal in size to the remaining proportion.
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Fig. 2. Mean level of undecided voters, as captured by national polls, over the 90 days prior to
US presidential elections from 2004 to 2016. The number of undecided voters on each day x is
the weighted average from national polls that occur within a two-week window centred at x.

3. Comparison of undecided voters in US presidential elections from national

surveys

Undecided voters were much higher during the 2016 US presidential election relative to
previous years. Figure 2 shows the moving average number of undecided voters over the
course of presidential elections from 2004 to 2016. It can be seen that the year 2016
had a larger number of undecided voters on average and that this trend was persistent
over the course of the campaign. Whilst 2016’s pattern of undecided voters over time
was similar to that of 2012, the major di↵erence was that in the final week of polling
the undecided voters did not continue to fall. It also appears that the 2004 and 2012
elections followed a similar pattern, however the extra variability in the 2004 election
may be explained by lower numbers of polls and the reconstruction that took place. In
the week prior to each election the weighted average of undecided voters was 5.1%, 3.5%,
3.9%, and 2.7% for 2016 to 2004 respectively.

The distributions of undecided voters in the months leading up to presidential elec-
tions also appear to vary over time, as seen in Figure 3. The undecided voters in 2016
and 2008 have relatively fatter tailed distributions, whilst the 2012 and 2004 elections
appear to be centred between 3-4%. Undecided voter levels higher than 10% occurred
more frequently in the 2016 election than 2012 and 2004, and somewhat more frequently
than in 2008. The similarities of 2016 and 2008 as well as 2012 and 2004 may be partially
attributable to the absence or presence of an incumbent candidate, but this is di�cult
to infer from only 4 elections.
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Fig. 3. Histogram of undecided voters, as captured by national polls, over the course of 3
months prior to the US presidential elections 2004-2016. Each bar is relative to the number of
polls from that year.

The levels of undecided voters in 2016 had an unusually high mean, di↵ered more
across states, and did not follow the final week decrease of previous elections. This
finding, coupled with evidence from Figure 1, motivates an investigation into the e↵ect
of undecided voters on polling errors in the 2016 US presidential election.

4. Methods

4.1. Assessing poll bias with the total survey error framework

We use a total survey error framework (see Biemer, 2010, for overview) to analyse state
polls from the US elections. The paradigm has a long history, discussed as early as Dem-
ing (1944). We refer readers to Groves and Lyberg (2010) for a thorough introduction
to the literature. The total survey error paradigm attempts to account for, and assess,
many sources of error with respect to user requirements. In this analysis we take the user
requirement to be predictive accuracy and calibration, and our users to be either polling
organisations or poll aggregators. As such, our aim is to estimate bias and variance and
describe the predictive characteristics of polls to these users. In particular, we quantify
the bias and variance attributable to undecided voters, and demonstrate the inadequacy
of proportional (or even) allocation rules.

As we are interested in ascertaining the impact of state-level influences, we consider
each state-level election from each presidential election year to be a distinct election.
With regard to modelling, henceforth an election refers to a state-level presidential elec-
tion from an US election year, specifically, 2004, 2008, 2012 or 2016.
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Under the total survey error framework, a survey error is defined as the deviation of a
survey response from its true underlying value. This error can occur either through bias
or variance. The bias term captures the systematic errors which are shared by all elec-
tion polls, such as shared operational practices, infrastructure and sampling frames for
example. The variance term captures sampling variation, and can account for variation
due to di↵erent survey methodologies, software, statistical models, or survey weighting
adjustments. Therefore, the poll error which is computed through comparing the elec-
tion outcomes to the predictions from multiple election polls, can be decomposed into
election level bias and variance terms. We adopt this framework to ensure that the
analysis of undecided voters and their role in the bias is not conflated by non-sampling
errors.

On the one hand, sampling errors arise from taking a sample rather than the whole
population and are usually accounted for using standard survey sampling approaches,
including post-stratification (Holt and Smith, 1979), calibration (Deville and Särndal,
1992), imputation (Gelman and Carlin, 2002). On the other hand, non-sampling error
is a catch-all term that refers to all other sources of error that are not a function of the
sample. In theory, although a specific poll estimate may di↵er from the true election
outcome, under favourable repeated sampling conditions polls should produce reliable
estimates (Assael and Keon, 1982). However, in practice, it is well known that di↵erences
between poll results and election outcomes are only partially attributable to sampling
error (Ansolabehere and Belin, 1993). Most statistical procedures to compensate for
non-sampling errors assume near universal (or high) response, but this is far from the
norm: the majority of election surveys have less than 10% response rates (PRC, Pew
Research Center, 2012). Further, in polling there is a general di�culty in measuring
voting intention and voting behaviour because polls measure the beliefs and opinions of
respondents at the time of the survey, and cannot fully capture what respondents will do
on election day (Bernstein et al., 2001; Silver et al., 1986; Rogers and Aida, 2014; Jowell
et al., 1993). Increasingly, e↵orts to mitigate against this can exacerbate the inaccuracy
(Ansolabehere and Hersh, 2012; Voss et al., 1995; Gelman et al., 2016; Bailey et al.,
2016). This is especially true when it comes to dealing with those who are undecided,
either because they are truly undecided, or are hiding extreme voting preferences (Gerber
et al., 2013). The treatment of the group of polling responses that report to be undecided
is therefore an important, yet relatively unstudied area of research.

4.2. A Bayesian approach to total survey error incorporating undecided voters

We use a meta-analytic approach to compare the estimates from the individual polls
to the eventual election outcomes. This combines information from the various polls to
produce a pooled estimate for the di↵erences between the state-election poll means and
the election outcome – which is our ground truth. The modelling framework is based
on the model proposed by Shirani-Mehr et al. (2018). Their model quantifies the total
error by estimating the vote share under a two-party preference, but does so by assuming
proportional allocation of undecided voters. We extend their model to explicitly include
undecided voter proportions. A second addition to our model is a term for house e↵ects
(or pollster-specific bias) of polling agencies. These two sources of bias do not account
for all errors polls are subject to, but do provide a quantitative method for assessing
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how much variability in the voting outcome is due to these sources. For other sources,
the model uses state-year net bias and variance terms to capture the remaining error in
the polls.

Since there are relatively few numbers of polls in some elections, a simple measure,
such as root mean squared error, may yield imprecise estimates of the election-level
bias. We address this by fitting a Bayesian hierarchical latent variable model (Gelman
and Hill, 2007). This method pools data to determine estimates of bias and variance in
states with small numbers of polls, allows bias to vary over time, and better captures the
variance in excess of that expected from a simple random sample. The model “borrows
strength” across states and time to estimate smoothed within state trends of both polling
bias and undecided voters in each election.

With small adjustments the notation in Shirani-Mehr et al. (2018), each poll is as-
sociated with an election denoted by the index r[i]. Let yi be the two-party support for
the Republican candidate of poll i, ni be the sample size, and ti be the time at which
the poll was conducted. Two-party support indicates that a proportional allocation of
the undecideds voters (or scaling) has occurred, namely

yi =
Ri

Ri +Di
(1)

where the Republican and Democratic support as measured in poll i, is Ri and Di

respectively. The time ti is the duration between the last day the poll was conducted
and the relevant election date, and is scaled to be between 0 and 1. The Republican
candidate’s final two-party vote outcome is denoted by vr. Each poll is assumed to be
distributed by

yi ⇠ N (pi,�
2
i )

logit(pi) = logit(vr[i]) + ↵1r[i] + ti�1r[i]

�2
i =

pi(1� pi)

ni
+ ⌧21r[i]

(2)

where N (µ,�2) denotes the normal distribution parametrised by mean and variance,
and the first subscript (e.g. the 1 in ↵1r) indicates that the parameter is part of the
polling model. The vote, vr, captures the true mean of the polls allowing election level
bias to be estimated by ↵1r + ti�1r on the logit scale. Estimation on this scale ensures
the estimated poll value, pi, is bound between 0 and 1. Bias on election day is ↵1r and
the time-varying bias coe�cient is �1r. As for the variance, ⌧21r accounts for the excess
variance above what is expected in a simple random sample.

The model is able to detect the bias in election polling at the state-year level by cen-
tring the model about the actual election outcome, whilst estimating the excess variance
by anchoring the model variance at the level expected from a simple random sample.
Elections with few polls are estimated by pooling the data across elections using hierar-
chal priors (see Table 3 in Appendix A).

Using the estimated two-party support from polls, as in (1), the model implicitly
assumes that undecided voters are distributed proportionately to the major-party can-
didates. We relax this assumption by explicitly distributing the undecided voters in
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proportion but with flexibility. To illustrate, let the undecided voters from poll i be Ui,
with Ri and Di as in (1). Scaling the polls to exclude third party candidates, we assume
that

y0i =
Ri + �Ui

Ri +Di + Ui
(3)

where 0  �  1 allocates the undecided voters to the Republican candidate. Rather
than using proportional allocation, � = Ri

Ri+Di
, as is the case in model (2), we use

� =
Ri

Ri +Di
+ ✓i (4)

where ✓i is an unknown bias (away from proportional allocation) which occurs at some
level (i.e. poll, election or election year). Simplifying equation (3) with (4) leads to the
identity

y0i = yi + ui✓i (5)

where yi, represents the Republican two-party vote share as in (1) and ui =
Ui

Ri+Di+Ui

represents the scaled proportion of undecided voters. This observation motivates chang-
ing model (2) to include undecided voters as an explanatory variable.

The term ✓i measures the bias away from a proportional two-party split. However, us-
ing poll-level undecided voters as an explanatory variable is problematic for two reasons;
it is subject to measurement error (it is a survey estimate), and the level of undecided
voters varies over time (see Figure 2). The latter issue may confound ✓i with estimates
of the time-varying component of bias already in the model, �1r.

To address these concerns we propose a model for the undecideds so that election day
undecided voter levels can be included in model (2), rather than the undecided numbers
from each poll. The model of the undecided voters is

ui ⇠ N

⇣
↵2r[i] + ti�2r[i], ⌧

2
2r[i]

⌘
(6)

where ↵2r estimates the election day level of undecided voters, the observed change in
undecideds over time is accounted for by �2r, and ⌧22r measures the variability within
each state-level election race r. From the undecided model, ↵2r becomes an explanatory
variable measuring the election day level of undecided voters in each race. It appears in
the extended model‡

yi ⇠ N (pi,�
2
i )

logit(pi) = logit(vr[i]) + ↵1r[i] + ti�1r[i] � ↵2r[i]�g[i] + h[i]

�2
i =

pi(1� pi)

ni
+ ⌧21r[i]

(7)

where �g has replaced ✓i in (4) and is the bias attributable to mean undecided voters from
the groups of state-years given in Figure 1. The 12 groups, index by g, are formed by the

‡Since the undecided voter proportions are between 0% and 10% approximately, we multiply
↵2r by 10 so that it is on the same scale as ti. This improves computational performance when
estimating the model. Testing has shown negligible impact on the estimates.
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cartesian product of election year (2004, 2008, 2012, and 2016) and the election result
margin groups. The latter categorises how close election results were; strong Republican
(margin > 6% in favour of Republican), close margin (absolute margin  6%), and
strong Democrat (margin > 6% in favour of Democrat). These groups are in line with
Figure 1 and were chosen because results with a margin greater than 6% are extremely
unlikely to be a↵ected by undecided voter allocation – in the sense that (for the majority
of states) the winner collects all of the state’s Electoral College votes. Hence, the close
margin group will have the most impact on the eventual outcome of the election. The
groups are also a crude measure of partisan strength and influence in a state.

The �g coe�cient is not estimated at the poll level because we now estimate (and
allocate) at the state-year level of undecided voters on election day (↵2r). Moreover,
using the 12 groups, rather than a coe�cient for each state-year, occurs because of
identifiability issues with ↵1r. In addition to accounting for measurement error, using
(6) also allows polls that do not report undecided voters (i.e. they have missing data)
to be included in the model since only the state-level mean enters model (7).

The house e↵ects from di↵erent polling agencies or groups are modelled by h[i].
House e↵ects are errors specific to a polling firm, for example they may arise from
flawed survey or modelling methods or partisan prejudice. We include bias terms for 39
di↵erent polling agencies, indexed by h. Not all polls have an associated house e↵ect,
only those where at least 8 polls were in the dataset.

To ensure that the final inference is not substantially a↵ected by the choice of prior,
we specify weakly informative priors following the previous work (Shirani-Mehr et al.,
2018). The hierarchal specification of the priors pull the bias and variance estimates
of the poll towards the state’s average in a given election year. However, the e↵ect is
related to the number of polls in the particular election year, and the overall distribution
across all polls. For states with few polls (in a given year), the estimates can be inferred
from information from other polls (across state and time). For the �g and h we specify
priors with shrinkage towards zero, this ensures the probability of overestimating these
e↵ects is low. The list of priors and further explanation can be found in Table 3 in
Appendix A.

We maintain a focus on the assumption of proportional allocation of undecided voters
as it allows us to use polls that do not report an undecided voter number to still enter
model (7). However, we rerun the model with an even split of the undecided voters to
each party for a more robust analysis. The results are very similar to model with pro-
portional allocation (see Figure 6 for example) and are discussed further in Appendix D.

Bayesian posterior sampling was conducted using the No-U-turn Hamiltonian Monte
Carlo sampler (Ho↵man and Gelman, 2014) implemented in Stan (Carpenter et al.,
2017). The analysis was facilitated by the statistical coding environment and language
R (R Core Team, 2017), the R interface to stan, rstan (Stan Development Team, 2018),
and diagnostics were provided by shinystan (Stan Development Team, 2017).

5. Results

First, we compare our results from election years 2004 to 2016 with results obtained
by Shirani-Mehr et al. (2018) for 2000 to 2012 using the model specified in (2) and the
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Table 1. Average election-level absolute bias and average election-level standard deviation across
state-elections in given year(s) from model (2). Values shown are posterior mean (s.d.) in percent-
age points.

Overall
2004 2008 2012 2016 2004–2016 2000–2012¶

Average absolute bias
0.9% 1.2% 1.4% 2.6% 1.7% 1.2%
(0.11) (0.10) (0.11) (0.10) (0.06) (0.07)

Average absolute election day bias
0.9% 1.2% 1.3% 2.4% 1.6% 1.2%
(0.13) (0.12) (0.14) (0.13) (0.07) (0.08)

Average standard deviation
2.2% 2.2% 2.1% 2.4% 2.3% 2.2%
(0.05) (0.04) (0.04) (0.05) (0.03) (0.04)

aforementioned paper. In Table 1, the average absolute bias§ (bias from ↵1r+ ti�1r) and
election day bias (↵1r) are both considerably higher in 2016 than in the previous three
election years. The measures were at least 1.1 percentage points above previous years,
having more than twice as much bias in the case of 2004 and 2008. The increased bias in
2016 can explain the increase to the overall 2004–2016 average bias compared to that of
2000–2012. The yearly averages shown in Shirani-Mehr et al. (2018) are also consistent
with the results in Table 1 (2004, 2008, and 2012).

Whilst the bias in election polls seems to have played a large role in the abnormality
of the 2016 election year’s polls, the average standard deviation appears to be consistent
across time. The average standard deviation in 2016 was only 0.2% above the next
highest year. This is not a qualitative di↵erence given the range of values is only 2.1% to
2.4% from 2004 onwards. The consistency in average standard deviation over time lends
strength to the conclusion that individual polls are subject to approximately twice as
much standard deviation than what is reported (i.e. a simple random sample calculation)
(Shirani-Mehr et al., 2018; Rothschild and Goel, 2016).

Second, Table 2 lists the average results from model (7) where several bias definitions
are considered. Average absolute bias describes the average of election-level bias from
all sources, whilst average absolute election day bias consists of all sources but the time-
varying component (i.e. ti = 0). Average absolute undecided voter bias and house
e↵ects consist solely of their respective bias terms, namely ↵2r[i]�g[i] and h. They are
also averaged at the election-level, as is average standard deviation, the average election-
level value of �i from model (7). Details of these calculations are in Appendix B. The
estimates of bias in a given column of Table 2 will not sum to the total (average absolute
bias) since they can take di↵erent signs.

The state level aggregation of undecided voters in (6), used in model (7), predicts that
3.0% to 3.8% of voters were undecided on election day between 2004 and 2012, whilst
predicting 5.5% in 2016. These results are consistent with Figure 2 which suggested
much higher levels of undecideds in 2016 than previous years.

The average absolute (election day) bias in Table 2 is approximately equal to those in
Table 1. This indicates that both the original model, and the extended model are able to

§see Appendix B for technical definitions
¶Results from identical model using data from 2000 to 2012 (Shirani-Mehr et al., 2018).
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Table 2. Average election-level absolute bias and average election-level standard devia-
tion across state-elections in given year(s) from model (7) with assumption of proportional
allocation of undecided voters

Overall
2004 2008 2012 2016 2004–2016

Average absolute bias
0.8% 1.0% 1.3% 2.6% 1.7%
(0.11) (0.10) (0.10) (0.10) (0.06)

Average absolute election day bias
0.8% 0.9% 1.3% 2.4% 1.6%
(0.12) (0.11) (0.14) (0.12) (0.07)

Average absolute undecided voter bias
0.3% 0.4% 1.0% 2.1% 1.1%
(0.17) (0.17) (0.29) (0.25) (0.11)

Average absolute house e↵ects
0.6% 0.4% 0.2% 0.2% 0.3%
(0.15) (0.12) (0.08) (0.09) (0.09)

Average standard deviation
2.2% 2.2% 2.1% 2.4% 2.2%
(0.04) (0.04) (0.04) (0.05) (0.03)

Average election day undecided
3.3% 3.8% 3.0% 5.5% 4.2%
(0.24) (0.21) (0.21) (0.28) (0.14)

account for approximately the same amount of bias in the US presidential election polls.
However, the extended model is able to disaggregate bias into two additional sources.

The average absolute undecided voter bias was estimated to be 2.1% in 2016. This is
more than twice the value in previous years. We can also calculate the average election
day bias without undecided voters in 2016, which was only 1.1% (0.14). This is much
closer to the total election day bias estimated in previous years (0.8-1.3%), and highlights
the strong influence undecided voters had on the 2016 presidential election.

The bias attributable to undecided voters in 2004 and 2008 is very small, only 0.3-
0.4%. Since the posterior estimates for the e↵ect of undecideds on bias (�g) are mostly
centred close to zero (see Figure 4), and the estimated level of undecided voters was
relatively low (Table 2), the role of undecided voters seems minimal in these years. The
aggregate e↵ect of these factors can be seen in Figure 5. In the 2012 election a change
occurs when undecided voter bias moves from 0.4% (2008) to 1.0%. The potential e↵ect
of undecided voters in this year may have been mitigated by the relatively low levels
polled (only 3.0% on average).

To further elicit the role of undecided voters in 2016, Figure 4 contains the 95% and
50% credible intervals of the e↵ect size of undecided voters on the polling bias, �g, on the
logit scale. This parameter vector estimates the biasing e↵ect attributable to undecided
voters for twelve groups discussed in Section 4.2 and shown in Figure 1. In terms of the
election outcome, we should pay most attention to the close margin category due to the
winner-takes-all e↵ect of the Electoral College system.

The credible intervals of �g in election years 2004 and 2008 show similar results. Both
the strong Republican and close margin categories show no sign of bias from undecided
voters. Evidence for polling bias in these years and groups could be mixed (changing
from state to state) or inconclusive. There is weak evidence from the strong Democrat
category that some bias was induced by the undecided voters (away from proportional
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allocation) toward the Republican candidate. In 2012, the reverse occurs – the strong
Republican group has bias toward the Democratic candidate. There is some evidence
that a biasing e↵ect was present for the close margin group in 2012, but it may also be
low or negligible. Figure 1 shows the mean level of undecided voters was relatively low
in 2012’s close margin category, so overall undecided voters were unlikely have had a
substantive e↵ect in 2012. In general, there seems to be a skew toward the Democratic
candidate in 2012, whilst the reverse pattern emerges even more strongly in 2016.

The 95% credible intervals for 2016’s close margin group range from 0.40 to 1.75 with
a mean of 1.08. This is the only year (in our set) where the close margin states so clearly
induced bias into election polls. Considering estimated undecided numbers averaged
5.5% on election day in 2016, this was an important source of bias in 2016 and reveals
one reason why Trump underperformed in the polls. The strong Democratic group had
an even higher bias in 2016 toward Trump, with mean 2.81. This is an interesting result
in its own right, (as is 2012’s strong Republican category), but had little or no e↵ect on
the perception of poll failure since the binary prediction of these races are still likely to
be correct, and hence unlikely to change the Electoral College predictions.

Figure 5 shows the distribution of state level average absolute bias from undecided
voters on election day. This figure highlights the consequence of high numbers of un-
decided voters combined with their large biasing e↵ect in 2016 (and to much less of an
extent in 2012). The undecideds’ contribution to polling bias in 2016 is made up of three
distinct groups, roughly translating to the aforementioned categories. The e↵ect in 2016
was up to approximately 4%, whilst the overall e↵ect of undecideds has been almost
negligible in 2004 and 2008. The low impact of undecided voters prior to 2016 is likely
due to the relatively low levels observed, combined with the possibility that undecided
voters did not bias polls cohesively in previous years.

A house e↵ect (h), attributable to the bias induced by polling agencies methods and
practices, is estimated for 39 such firms in the model. Overall, we find a greater number of
polling agencies have high bias favouring Republican candidates than high bias towards
Democratic candidates, and an overall skew favouring Republicans. However, more polls
are needed to accurately assess the Democratic-leaning pollsters. The estimates of this
component of bias are presented and discussed further in Appendix C.

Figure 6 compares the 2016 election day bias of the polls in each state (↵1r � ↵2r�g
in the model) for the two types of static undecided voter allocations (see Appendix D
for results of even allocations). The grey bars indicate the 95% credible intervals of
election day bias for proportional allocation, whilst the black bars are for even allocation.
The state election day biases show that neither allocations performed uniformly better
than the other. Proportional allocation resulted in polls with a relatively less biased
performance in Utah, Idaho, Iowa, and California for example. Whereas in Vermont,
Maine, and Alaska the even allocation was performed marginally better. The relatively
larger credible intervals for the even allocation can be attributed to the reduction in
sample size for this model which is explained in Appendix D.

Using an even allocation of undecided voters caused no substantive change to the
results above, which assumed proportional allocation. The quantitative results in Ap-
pendix D and Figure 6 show that both allocation methods were insu�cient to incorporate
the necessary uncertainty in undecided voter allocation. In summary, a rigid and non-
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probabilistic rule for allocating undecided voters was not appropriate for the 2016 US
presidential election.

6. Discussion

While there have been methodological advances in election polling and modelling over
time, measuring public opinion is still di�cult. Polls have ‘failed’ to accurately predict
winning candidates (at least according to the media) in several recent elections, such
as the 2015 British election, the Scottish independence referendum, the Brexit referen-
dum, the 2014 US House elections and the 2016 US presidential election (the focus of
our paper). Our analyses revealed that one important source of bias in the polls may
be undecided voters. We showed that undecided voters biased polls in the 2016 US
presidential election by up to 4% in some states (all things being equal). This bias is
particularly problematic given the increasing number of undecided voters observed in
our analysis. We found that in 2016, 5.5% of voters were undecided on election day– up
from 3-4% in previous years. Others have also found that the percentage of voters who
are undecided in the final week of an election campaign is high (up to 30% in some coun-
tries) and may be increasing (Irwin and Van Holsteyn, 2008; Gelman and King, 1993;
Orriols and Martnez, 2014; Sturgis et al., 2016), although Sturgis et al. (2016) note that
the overall e↵ect of late-deciding voters was modest, at most 1%, in the 2015 British
general election. Given the rising prevalence of indecisive, late-revealing or late-deciding
voters, and the bias they may introduce to polling, more attention needs to be given to
this group when predicting election outcomes.

It is well known within the survey research community that, polls su↵er from both
sampling (due to the fact that information has been collected from a sample rather than
everyone in the population) and non-sampling (due to the fact that there is underlying
di↵erences in voting behaviour and voting outcomes) errors. Statistical and operational
adjustments compensate for sampling errors, but in reality it is the non-sampling errors
that play a significant role in the discrepancies between the poll results and election
outcomes. The total survey error approach provides a methodology for capturing both
types of errors. We have used this approach to understand, interpret and report the
various sources of error that in exist in election polling. We have focused specifically on
undecided voters, and provide evidence that found that there was substantial di↵erences
in the degree of undecidedness in pre-election polling in the 2016 US election.

Since the majority of polling agencies had no specific methodology to include this in
their predictive models, the reported results over-estimated the lead of the Democratic
candidate, Clinton, against the Republican candidate, Trump. Our results show that
voters who were undecided at the time of being surveyed tended to behave di↵erently
to those who decided which party or candidate to vote for earlier. Although it is well
recognised that undecided respondents contribute to polling error, there is no consensus
about the inferences that can be drawn from their data (Henderson and Hillygus, 2016;
Fenwick et al., 1982; Hillygus, 2011). Our research has demonstrated that a failure
to adequately include them leads to inaccuracies in polling predictions. Specifically,
static proportional and even allocations of undecided voters led to bias in polling of
the 2016 presidential election. Because of this, we argue that undecided voter counts
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should always be reported, and probabilistic allocation of undecided voters needs to be
implemented in future predictive models. This will allow the uncertainty attributable to
undecided voters to propagate through these election models, and improve predictions.

The American Association for Public Opinion Research’s (AAPOR) report on US
presidential election polling in 2016 (Kennedy et al., 2017) concluded that, in general,
polls did not fail relative to historical standards but did under-estimate the support
for a Trump presidency in some key states. The authors cited late-deciding voters
as one of several explanations for Trump outperforming Clinton on election day. Our
study complements AAPOR’s report by demonstrating a sizeable number of undecided
voters on election day relative to previous elections and by finding a significant e↵ect
of undecided voters on the bias in election polls in 2016 using a total survey error
model. The AAPOR report relied on exit poll data, whereas we use polling data prior
to the election, meaning it may be possible to detect and mitigate these e↵ects in future
predictions. We also show that the role of undecided voters in 2016 was di↵erent to
the 2004, 2008, and 2012 elections. In these previous elections, undecided voters did
not significantly a↵ect the races which were close, nor did they significantly contribute
to overall polling bias as the number of undecideds remained low. Some bias due to
undecided voters was visible in elections prior to 2016, however, the a↵ected states were
not tight races and therefore did not influence the binary outcome of the election.

Despite the novelty of our findings in ascertaining the role of undecided voters and
the adoption of the total survey error framework, our analyses has some noteworthy
limitations. Our models remain associational and only provides evidence to support
the hypothesis that there is a relationship between the increase in undecidedness and
polling accuracy. Properly understanding the underlying e↵ects, and causal mechanisms
surrounding how indecision directly influences election outcomes will require future in-
terdisciplinary research. Figure 4 shows that there have been other election years where
undecided voters have biased polls away from proportional allocation for certain groups
of states. Future research could elicit similarities between these groups which may be
useful for predicting the biasing e↵ect of undecided voters.

In our analysis we would have liked to model more sources of error explicitly, par-
ticularly other sources of error highlighted in Kennedy et al. (2017). For example,
accounting for over-representative sampling of college graduates in some polls would
be helpful. However, we were constrained by lack of survey methodology disclosure by
polling agencies that limits the number of attributes recorded for polls in our dataset.

Additionally, though our modelling allows us to quantify the errors that are left
unmeasured in standard election level estimates of accuracy, we have not translated this
to a model of how respondents will vote in future elections. For those wishing to predict
US presidential elections, our analysis demonstrates that if undecided voter levels are
high they must be included in the modelling process and that deterministic allocation
is not appropriate. For example, an averaging method could model undecideds levels
by state, such as in Equation (6), and allocations to candidates can be simulated (by
Bayesian methods or bootstrapping say). Probabilistic allocation should at least lead to
better estimates of uncertainty, and thereby model calibration. The posterior estimates
of undecided allocation bias presented in this paper may also be used as a starting place
for predictive modellers to incorporate this bias.
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Undecided voters played a pivotal role in the 2016 US presidential election, contribut-
ing significantly to the bias observed in the polls. We have shown that static allocation
methods (proportional and even) were inadequate in the 2016 election. Probabilistic
allocation should be considered in future elections, but further investigation and vali-
dation of specific methods is needed especially considering the limited supplementary
information provided by commercial polls.
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Table 3. Priors used in models for analysis of state pollsk.
Prior Hyper-prior

Model Component Mean Variance

Polling Mean

↵1r ⇠ N (µ1↵,�2
1↵) µ1↵ ⇠ N (0, 0.2) �1↵ ⇠ N+(0, 0.2)

�1r ⇠ N (µ1� ,�2
1�) µ1� ⇠ N (0, 0.2) �1� ⇠ N+(0, 0.2)

�g ⇠ L(0, 0.05)
h ⇠ N (µ,�2

) µ ⇠ N (0, 0.05) � ⇠ exp(1/0.05)
Variance ⌧21r ⇠ N+(0,�2

1⌧ ) �1⌧ ⇠ N+(0, 0.05)

Undecided voters
Mean

↵2r ⇠ N (�y[r],�
2
2↵) �y ⇠ N (0.04, 0.01) �2↵ ⇠ N+(0, 0.02)

�2r ⇠ N (µ2� ,�2
2�) µ2� ⇠ N (0, 0.02) �2� ⇠ N+(0, 0.02)

Variance ⌧22r ⇠ N+(0,�2
2⌧ ) �2⌧ ⇠ N+(0, 0.01)

A. Prior distributions for undecided voter analysis

The priors used for the polling model, in Table 3, are identical to those from Shirani-
Mehr et al. (2018) expect for the undecided voter allocation, �g, and bias from house
e↵ects, h, which are new to the model.

The (non-hierarchal) prior probability distribution for �g is Laplacian (or double-
exponential) as we wish to shrink the estimates towards zero where there is insu�cient
evidence to suggest a true e↵ect exists. We base this prior on Figure 1 where we observe
only some categories appearing to demonstrate a relationship between error and the level
of undecided voters. The undecided voters on election day, ↵2r, is scaled in the polling
model by 10, so that its value is approximately on the same scale as ti. This is done for
computational reasons, but as a result the prior scale assigned to �g (0.05) is comparable
to the scales of other priors. We set its value to be a quarter of the original parameters
prior scales to induce further shrinkage.

The house e↵ects bias, h, is specified with a hierarchal prior, similarly to the other
hierarchal parameters in the model. Some polling agencies have few polls included in
the sample and we would like the parameter estimates to borrow strength across the
agencies – just as in the state-level election day bias parameter, ↵1r. However, we assign
a exponential distribution to the standard deviation, � to induce further shrinkage,
relative to ↵1r and �1r. Implicitly, we are assuming that some pollsters actually have
negligible bias due to their practices so we reflect this in our priors. The scale parameters
of this prior are also a quarter of the original parameters prior scales.

The priors for the undecided model are also hierarchal where appropriate. We as-
sign variance levels so that only weak information over the observed undecided voter
proportion range (between approximately 0 and 0.2%) is provided. The prior for ↵2r

has mean, �y, that varies across year. This is included because the mean of the model
is uncentered, unlike the polling model which uses vr, and we observe di↵erent levels
of undecided voters across years. The prior for �y, the mean level of undecided voters
in each year, is weakly-informative but centred on 0.04. This value is the approximate
mean observed in Figure 2.

kThe notation N+(µ,�2) denotes half-normal distribution, while L(µ,�) represents the Lapla-
cian or double-exponential distribution.
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Table 4. Descriptions and definitions of poll-level bias quantities used to calculate election-
level bias (and averages) on percent scale.
Name Sym. Poll-level metric
Model (2)
All bias br logit(pi) = logit(vr[i]) + ↵1r[i] + ti�1r[i]

Election day bias ber logit(pei ) = logit(vr[i]) + ↵1r[i]

Model (7)
All bias br logit(pi) = logit(vr[i]) + ↵1r[i] + ti�1r[i] � ↵2r[i]�g[i] + h[i]

Election day bias ber logit(pei ) = logit(vr[i]) + ↵1r[i] � ↵2r[i]�g[i] + h[i]

Undecided voter bias bur logit(pui ) = logit(vr[i])� ↵2r[i]�g[i]
House e↵ects bhr logit(phi ) = logit(vr[i]) + h[i]

B. Mean election-level bias and variance calculations

The definitions of mean bias and variance quantities presented in Table 1, Table 2, and
Figure 5 are taken from Shirani-Mehr et al. (2018) where appropriate. We restate them
here, and add additional definitions for bias from undecided voters and house e↵ects.
For a given election race, the average bias, br, is defined as

br =
1

|Sr|

X

i2Sr

(pi � vr) (8)

where Sr is the set of polls from state-level election r, |Sr| denotes the size of the set Sr,
and pi is taken from either model (2) or (7) depending on which is in use. Calculating the
mean of |br| over a given set of elections determines the average election-level absolute
bias over that set. The set of races, for example, could be one election year (e.g. all
state-level races in 2004), or all of the elections in the dataset.

The bias on election day can be calculated by setting t = 0 in pi and calculating the
same quantity above. More specifically

ber =
1

|Sr|

X

i2Sr

(pei � vr) (9)

where logit(pei ) = logit(vr[i]) + ↵1r[i] � ↵2r[i]�g[i] + h[i]. Similarly, bias attributable to
certain components or excluding components can be calculated by setting the unwanted
parameters in pi to zero. The full list of bias measures are in defined at the poll-level
Table 4. As in Equations (8) and (9), the election-level bias for each race r can be
calculate by taking the mean over the polls of that election.

Finally, the average absolute election-level bias, µb,S , of type b, over subset of elections
S, can be calculated by

µb,S =
1

|S|

X

s2S
|bs|. (10)

The average election-level polling standard deviation is defined similarly by

�r =
1

|Sr|

X

i2Sr

s
pi(1� pi)

ni
+ ⌧21r (11)

and the average over a set of elections can be calculated based on this quantity also.
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Table 5. Average house effects across elections. Only
those polling agencies with mean posterior greater than 0.5% are
shown.

Posterior
Polling agency or group mean s.d.
ARG 0.61 0.35
CNN 0.50 0.48
Gravis Marketing 1.01 0.33
Grove Insight -0.67 0.49
JZ Analytics / Newsmax -0.69 0.54
Lucid / The Times Picayune -1.23 0.49
Mason Dixon 1.27 0.29
Monmouth University -0.51 0.55
Rasmussen 0.95 0.22
Remington Research Group / AxiomStrategies 1.64 0.35
Strategic Vision 1.27 0.31
University of Cincinnati 0.58 0.53
University of New Hampshire -1.28 0.53
University of Wisconsin -1.06 0.59
UPI/CVOTER 0.69 0.32
Zogby 0.60 0.46

C. Bias from house effects

The house e↵ect for a given polling organisation is the bias attributable to their specific
polling methods and practices. Unfortunately, we are only able to capture an aggregate of
house polling bias, because polling agencies only release a small amount of information on
the assumptions behind their polls. Of the total number of polls, 85% have an associated
house e↵ect estimated. Polls without an associated house e↵ect are due to insu�cient
poll numbers from the pollster.

Figure 7 shows some interesting trends in partisanship and polling. Overall, there is a
small skew toward pollsters being biased in favour of Republican candidates, and far more
of these Republican-biased agencies are decisively biased. Rassmussen, Gravis Market-
ing, Mason-Dixon, Strategic Vision, and Remington Research Group/Axiom Strategies
have estimated average bias between 0.95% and 1.64% on average (Table 5). On the
other hand, the University of New Hampshire and Lucid/The Times Picayune appear
to have substantial bias in favour of the Democratic candidate – over 1.2% is shown in
Table 5. The wider credible intervals, relative to their Republic-bias counterparts, may
be due to a lower number of polls included in the data set (18 and 13 respectively, versus
between 24 and 198 polls per group).

Table 5 shows selected estimates of the overall bias, bh, attributable to pollster h on
the percentage scale. These values are calculated by

bh =
1

|Sh|

X

i2Sh

⇣
phi � vr[i]

⌘
(12)

where Sh is the set of polls taken by pollster h, phi is the poll-level house e↵ect bias (see
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Table 4), and vr[i] is the election result in race r associated with poll i.
The house e↵ect bias of a particular agency may be unintentional and unassociated

with partisanship. For example, the relative bias toward Democratic candidates by
Survey Monkey could be a result of their online sampling frame which is likely skewed
toward a younger demographic. Most, if not all, organisation use methods to mitigate
this bias but it is not alway possible when limited demographics are sampled.

The pollsters with arguably the best performance are youGov and Public Policy
Polling. However, both have a relatively high number of polls included in the dataset,
63 and 106 each. The average number of polls per pollster is 41, and range of polls is 8
to 184.

D. Modelling with an even allocation of undecided voters

In order to embed an even allocation of undecided voters into model (7), we make the
following changes.

(a) We remove the polls that do not report an undecided voter number as, unlike the
proportional case, we cannot infer the even allocation from the data. Following
their removal, 1,725 polls remain in the dataset.

(b) The poll represented in (1) changes so that the poll values are scaled to remove
third party candidates then Republicans are allocated 50% of the undecided voters.
Formally, this can be represented most succinctly by

yi =
Ri + 0.5⇥ Ui

Ri +Di + Ui
.

(c) The undecided voter allocation with uncertainty, � in (4), changes to � = 0.5 + ✓i.

Given the updated definitions of yi and �, using (3) we note that the identity in (5) still
holds and modelling can proceed as in the case of a proportional allocation of undecided
voters.

The analysis with an even allocation of undecided voters was very similar to the
original results in Section 5. In general, most measures of bias across the years slightly
increased, and the average standard deviation in the model increased. This is indicative
of a bias-variance trade-o↵ in the modelling process. Overall, summary measures for
elections years 2004–2016 had an increase in the bias of 0.1% (average absolute bias
and election day bias), and a decrease in the standard deviation of 0.1%. Focussing on
2016, average election day bias increased by 0.2%, whilst the average standard deviation
decreased by 0.2%.

The e↵ect of undecided voters on the polling bias in the model (�g) is replotted in
Figure 8 with credible intervals. This plot is largely unchanged and still shows that
undecided voters in the 2016 election year had a considerably di↵erent e↵ect on bias
compared to previous years.

The histogram of the absolute bias from undecided voters is replotted for each state-
level election in Figure 9 under the assumption of even allocation of undecided voters.
It shows a similar story as before. With careful comparison to Figure 5, one can see that
bias has increased for many of the states.
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Fig. 7. Credible intervals of 95% (outer line) and 50% (inner line) for the house effects bias
from polling organisations in the model (h), on the logit scale. A positive value indicates a bias
in favour of the Republican candidate, hence underperformance in the election result.
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Fig. 8. Credible intervals of 95% (outer line) and 50% (inner line) for the effect of undecided
voters on polling bias in the model (�g), on logit scale. A positive value indicates a bias away
from an even allocation of undecided voters in favour of the Republican candidate.



32 Bon et al.

Table 6. Average election-level absolute bias and average election-level standard de-
viation across state-elections in given year(s) from model (7) with assumption of even
allocation of undecided voters.

Overall
2004 2008 2012 2016 2004–2016

Average absolute bias
0.8% 1.1% 1.4% 2.8% 1.8%
(0.11) (0.10) (0.11) (0.10) (0.06)

Average absolute election day bias
0.8% 1.0% 1.4% 2.6% 1.7%
(0.12) (0.12) (0.14) (0.12) (0.07)

Average absolute undecided voter bias
0.4% 0.5% 1.0% 2.3% 1.3%
(0.19) (0.21) (0.30) (0.24) (0.11)

Average absolute house e↵ects
0.6% 0.4% 0.3% 0.2% 0.4%
(0.17) (0.14) (0.12) (0.06) (0.09)

Average standard deviation
2.1% 2.1% 2.0% 2.2% 2.1%
(0.04) (0.03) (0.03) (0.04) (0.03)

Average election day undecided
3.3% 3.8% 3.0% 5.5% 4.2%
(0.24) (0.21) (0.21) (0.28) (0.14)
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Fig. 9. Histograms of the average absolute bias from undecided voters for each state-level
election, separated by year. The bias from undecided voters is the quantity ↵2r�g in the model.
A positive value indicates a bias away from an even allocation of undecided voters in favour of
either candidate.


