Dependent Interviewing

A Remedy or a Curse for Measurement Error in Surveys?

Paulina Pankowska, p.k.p.pankowska@vu.nl Vrije Universiteit Amsterdam, Statistics Netherlands

Presentation outline

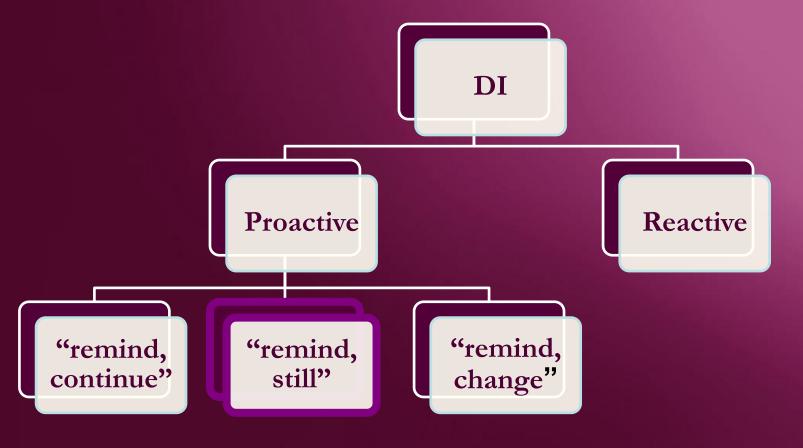
- Background
 - Longitudinal surveys & measurement error
 - Dependent interviewing (DI)

- Our research
 - Evaluating the effect of DI on:
 - Reliability of questions
 - Model estimates

Longitudinal surveys

- Collect data for same individuals over time
- Allow studying over-time change/ transitions

But...


- Suffer from measurement error which affects transition estimates
 - Spurious change

(Potential) solution- DI

Dependent interviewing (DI)

 Interviewing technique in which respondents are reminded of previous answers

DI & measurement error

- Expected to reduce (random) error
 - Assists recall less spurious change
 - Reduces cognitive burden
- Might lead to systematic error
 - Satisficing --> error carry-over

 Overall effect on reliability and estimates uncertain

Our research

• Focus: Evaluating the effect of DI on measurement error

 Method: Using latent class modelling to estimate misclassification rates and bias under DI and INDI

Data:

- Linked data from the Dutch LFS and ER
- Main variable of interest- individuals' contract type categories: permanent, temporary, other)

Our research

Temporary contracts

- DI:
 - In place until end of 2009
 - PDI- "remind, still"
 - Only if no job change occurred

"Last time you had a temporary contract. Is this still the case?"

"Do you currently have a permanent contract?"

- INDI:

- In place since 2010
- Also in 2009 if job change occurred

Our research

Permanent contracts

- No job change occurred- value carried over
- Job change occurred- question asked

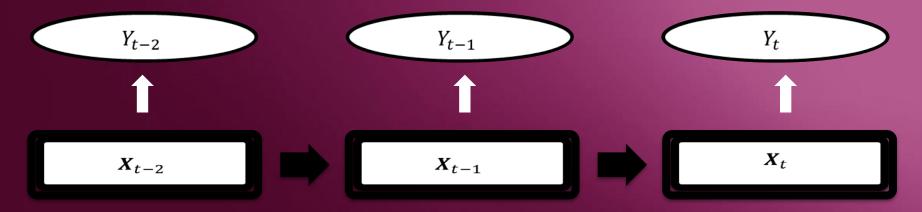
A total of 3 scenarios:

Job change occurred	2009 2010		
Yes	(I) IND for temp and perm		
No	(II) DI for temp and value copied for perm	(III) INDI for temp and value copied for perm	

Latent Class Modelling (LCM)

Latent class analysis (LCA):

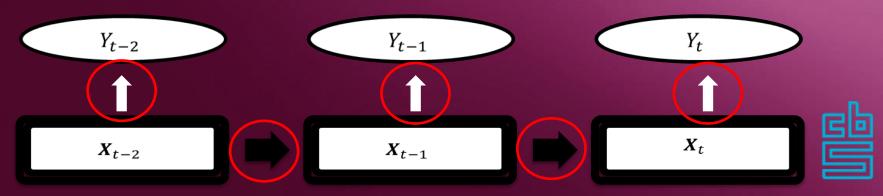
- Applied to categorical, cross-sectional data
- Uses multiple conditionally independent indicators
- Separates true value from error


Hidden Markov Models (HMMs):

- Applied to categorical, longitudinal data
- Uses repeated measures over time
- Separates true change from error

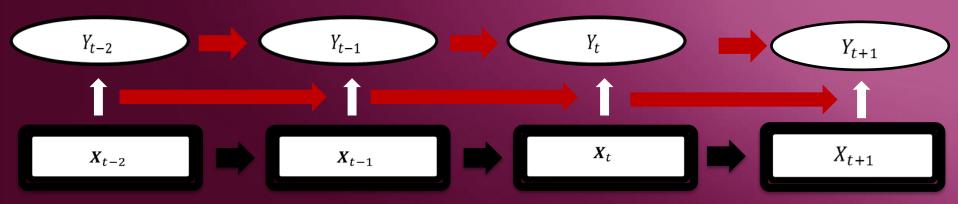
Hidden Markov Models (HMMs)

- HMMs consist of:
 - a structural part (latent/ true)
 - a measurement part (observed)


$$P(Y_i = y_i) = \sum_{x_0=1}^k \sum_{x_1=1}^k ... \sum_{x_T=1}^k P(X_{i0} = x_0) \prod_{t=1}^T P(X_{it} = x_t | X_{i(t-1)} = x_{t-1}) \prod_{t=1}^T P(Y_{it} = y_t | X_{it} = x_t)$$

Hidden Markov Models (HMMs)

- HMMs assume that:
 - The latent state at time t only depends on the latent state at time t-1 - the Markov assumption
 - The observed state at time t only depends on the latent state at time t - the local independence assumption



HMMs & DI

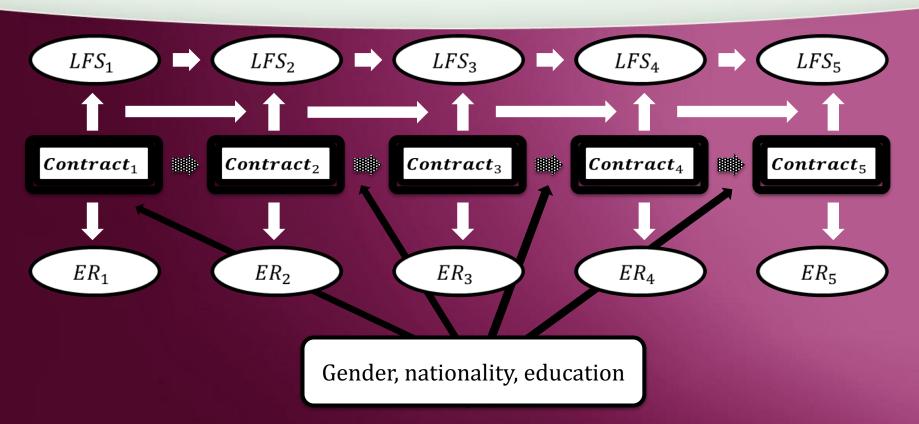
DI (might) lead to autocorrelation of error

Need to relax the local independence assumption

HMMs & DI

 Impossible to model autocorrelation and time-variant misclassification rates

Identifiability requires constant reliability



 Unless there are multiple indicators per time point (allow modeling both)

Our model

$$P(C_{i} = c_{i}, E_{i} = e_{i} | Z_{i}) = \sum_{x_{0}=1}^{3} \sum_{x_{1}=1}^{3} ... \sum_{x_{T}=1}^{3} P(X_{i0} = x_{0} | Z_{i})$$

$$\prod_{t=1}^{T} P(X_{it} = x_{t} | X_{i(t-1)} = x_{t-1}, Z_{i})$$

$$P(E_{i0} = e_{0} | X_{i0} = x_{0})$$

$$\prod_{t=1}^{T} P(E_{it} = e_{t} | X_{it} = x_{t}, X_{i(t-1)} = x_{t-1}, E_{i(t-1)} = e_{t-1})$$

$$\prod_{t=1}^{T} P(C_{it} = c_{t} | X_{it} = x_{t})$$

Data

Linked dataset with information from LFS and ER

- Sample consists of 20,760 individuals aged 25 to 55 who
 - I. Started LFS in first quarter of 2009 (8,536)- DI
 - II. Started LFS in last quarter of 2010 (12,080)- INDI

Dataset contains quarterly information on each individual for 5 time points

Results

Misclassification (measurement error) rates

Scenario		Overall	Temporary contracts	% of cases
(I) Job change (2009/ 2010)-	INDI	0,13	0,22	20%
(II) No job change & 2009-	DI	0,11	0,28	24%
(III) No job change & 2010-	INDI	0,11	0,25	17%

Probability of carrying-over the same error for DI

Observed at t-1	Latent at t-1 Latent at		Observed at t		
Observed at t-1	Latent at t-1	Latent at t	Perm	Temp	Other
Temporary	Permanent	Permanent	0,10	0,90	0,00
Temporary	Other	Other	0,00	0,87	0,13

Results

 Misclassification rates for those who had or would have had DI (overall and by wave)

Saanaria	Overall	Wave					
Scenario		1	2	3	4	5	
(II) No job change & 2009- DI	0,301	-	0,301	0,290	0,307	0,306	
(III) No job change & 2010- INDI	0,297	-	0,291	0,295	0,300	0,305	

Results

Latent and observed contract ditributions

Type of contract	2009	9	2010		
	Observed	Latent	Observed	Latent	
Permanent	0,69	0,61	0,68	0,60	
Temporary	0,05	0,14	0,05	0,14	
Other	0,26	0,25	0,27	0,26	

Latent and observed contract transition rates

Transition vote	200	9	2010		
Transition rate	Observed	Latent	Observed	Latent	
Temp to perm	0,07	0,05	0,11	0,05	

Conclusions

 Overall, DI appears to have a marginal effect on data quality

DI associated with high probability of the copying of errors

DI reduces random error (spurious change)

Thank you!

- Paulina Pankowska, p.k.p.pankowska@vu.nl
- Bart Bakker, <u>bfm.bakker@cbs.nl</u>
- Peter Lugtig, <u>p.lugtig@uu.nl</u>
- Daniel Oberski, <u>d.l.oberski@uu.nl</u>
- Dimitris Pavlopoulos, <u>d.pavlopoulos@vu.nl</u>

